A larger brown fat volume and lower radiodensity are related to a greater cardiometabolic risk, especially in young men

in European Journal of Endocrinology
View More View Less
  • 1 PROFITH ‘PRO-moting FITness and Health Through Physical Activity’ Research Group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain
  • | 2 Turku PET Centre, University of Turku, Turku, Finland
  • | 3 Turku PET Centre, Turku University Hospital, Turku, Finland
  • | 4 InFLAMES Research Flagship Center, University of Turku, Turku, Finland
  • | 5 Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
  • | 6 Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
  • | 7 Department of Analytical Chemistry, University of Granada, Granada, Spain
  • | 8 Research and Development of Functional Food Center (CIDAF), Granada, Spain
  • | 9 Department of Biochemistry and Molecular Biology II, ‘José Mataix Verdú’ Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, Granada, Spain
  • | 10 Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain
  • | 11 CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBNISCIII), Madrid, Spain
  • | 12 Nuclear Medicine Services, ‘Virgen de las Nieves’ University Hospital, Granada, Spain

Correspondence should be addressed to F M Acosta or J R Ruiz; Email: fm.acostamanzano@gmail.com or ruizj@ugr.es
Restricted access

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

Objectives

Brown adipose tissue (BAT) is important in the maintenance of cardiometabolic health in rodents. Recent reports appear to suggest the same in humans, although if this is true remains elusive partly because of the methodological bias that affected previous research. This cross-sectional work reports the relationships of cold-induced BAT volume, activity (peak standardized uptake, SUVpeak), and mean radiodensity (an inverse proxy of the triacylglycerols content) with the cardiometabolic and inflammatory profile of 131 young adults, and how these relationships are influenced by sex and body weight.

Design

This is a cross-sectional study.

Methods

Subjects underwent personalized cold exposure for 2 h to activate BAT, followed by static 18F-fluorodeoxyglucose PET-CT scanning to determine BAT variables. Information on cardiometabolic risk (CMR) and inflammatory markers was gathered, and a CMR score and fatty liver index (FLI) were calculated.

Results

In men, BAT volume was positively related to homocysteine and liver damage markers concentrations (independently of BMI and seasonality) and the FLI (all P ≤ 0.05). In men, BAT mean radiodensity was negatively related to the glucose and insulin concentrations, alanine aminotransferase activity, insulin resistance, total cholesterol/HDL-C, LDL-C/HDL-C, the CMR score, and the FLI (all P ≤ 0.02). In women, it was only negatively related to the FLI (P < 0.001). These associations were driven by the results for the overweight and obese subjects. No relationship was seen between BAT and inflammatory markers (P > 0.05).

Conclusions

A larger BAT volume and a lower BAT mean radiodensity are related to a higher CMR, especially in young men, which may support that BAT acts as a compensatory organ in states of metabolic disruption.

Supplementary Materials

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 1060 1061 550
Full Text Views 18 18 4
PDF Downloads 21 21 0
  • 1

    Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ & Enerbäck S et al.Functional brown adipose tissue in healthy adults. New England Journal of Medicine 2009 360 15181525. (https://doi.org/10.1056/NEJMoa0808949)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    Ruiz JR, Martinez-Tellez B, Sanchez-Delgado G, Osuna-Prieto FJ, Rensen PCN, Boon MR. Role of human brown fat in obesity, metabolism and cardiovascular disease: strategies to turn up the heat. Progress in Cardiovascular Diseases 2018 61 232245. (https://doi.org/10.1016/j.pcad.2018.07.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Carpentier AC, Blondin DP, Virtanen KA, Richard D, Haman F, Turcotte ÉE. Brown adipose tissue energy metabolism in humans. Frontiers in Endocrinology 2018 9 447. (https://doi.org/10.3389/fendo.2018.00447)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Villarroya F, Cereijo R, Villarroya J, Giralt M. Brown adipose tissue as a secretory organ. Nature Reviews: Endocrinology 2017 13 2635. (https://doi.org/10.1038/nrendo.2016.136)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Din UM, Raiko J, Saari T, Kudomi N, Tolvanen T, Oikonen V, Teuho J, Sipilä HT, Savisto N & Parkkola R et al.Human brown adipose tissue [15O]O2 PET imaging in the presence and absence of cold stimulus. European Journal of Nuclear Medicine and Molecular Imaging 2016 43 1878188 6. (https://doi.org/10.1007/s00259-016-3364-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Stanford KI, Middelbeek RJW, Townsend KL, An D, Nygaard EB, Hitchcox KM, Markan KR, Nakano K, Hirshman MF & Tseng YH et al.Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. Journal of Clinical Investigation 2013 123 215223. (https://doi.org/10.1172/JCI62308)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H & Waurisch C et al.Brown adipose tissue activity controls triglyceride clearance. Nature Medicine 2011 17 200205. (https://doi.org/10.1038/nm.2297)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Becher T, Palanisamy S, Kramer DJ, Eljalby M, Marx SJ, Wibmer AG, Butler SD, Jiang CS, Vaughan R & Schöder H et al.Brown adipose tissue is associated with cardiometabolic health. Nature Medicine 2021 27 5865. (https://doi.org/10.1038/s41591-020-1126-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Wibmer AG, Becher T, Eljalby M, Crane A, Andrieu PC, Jiang CS, Vaughan R, Schöder H, Cohen P. Brown adipose tissue is associated with healthier body fat distribution and metabolic benefits independent of regional adiposity. Cell Reports: Medicine 2021 2 100332. (https://doi.org/10.1016/j.xcrm.2021.100332)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Sun L, Yan J, Goh HJ, Govindharajulu P, Verma S, Michael N, Sadananthan SA, Henry CJ, Velan SS, Leow MKS. Fibroblast growth factor-21, leptin, and adiponectin responses to acute cold-induced brown adipose tissue activation. Journal of Clinical Endocrinology and Metabolism 2020 105 e520e531. (https://doi.org/10.1210/clinem/dgaa005)

    • Search Google Scholar
    • Export Citation
  • 11

    Mihalopoulos NL, Yap JT, Beardmore B, Holubkov R, Nanjee MN, Hoffman JM. Cold-activated brown adipose tissue is associated with less cardiometabolic dysfunction in young adults with obesity. Obesity 2020 28 916923. (https://doi.org/10.1002/oby.22767)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Herz CT, Kulterer OC, Prager M, Schmöltzer C, Langer FB, Prager G, Marculescu R, Kautzky-Willer A, Hacker M & Haug AR et al.Active brown adipose tissue is associated with a healthier metabolic phenotype in obesity. Diabetes 2022 71 93103. (https://doi.org/10.2337/db21-0475)

    • Search Google Scholar
    • Export Citation
  • 13

    Franssens BT, Hoogduin H, Leiner T, van der Graaf Y, Visseren FLJ. Relation between brown adipose tissue and measures of obesity and metabolic dysfunction in patients with cardiovascular disease. Journal of Magnetic Resonance Imaging 2017 46 497504. (https://doi.org/10.1002/jmri.25594)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Chen KY, Cypess AM, Laughlin MR, Haft CR, Hu HH, Bredella MA, Enerbäck S, Kinahan PE, Lichtenbelt WM & Lin FI et al.Brown adipose reporting criteria in imaging studies (BARCIST 1.0): recommendations for standardized FDG-PET/CT experiments in humans. Cell Metabolism 2016 24 210222. (https://doi.org/10.1016/j.cmet.2016.07.014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Din MU, Raiko J, Saari T, Saunavaara V, Kudomi N, Solin O, Parkkola R, Nuutila P, Virtanen KA. Human brown fat radiodensity indicates underlying tissue composition and systemic metabolic health. Journal of Clinical Endocrinology and Metabolism 2017 102 22582267. (https://doi.org/10.1210/jc.2016-2698)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Sanchez-Delgado G, Martinez-Tellez B, Olza J, Aguilera CM, Labayen I, Ortega FB, Chillon P, Fernandez-Reguera C, Alcantara JMA & Martinez-Avila WD et al.Activating brown adipose tissue through exercise (ACTIBATE) in young adults: rationale, design and methodology. Contemporary Clinical Trials 2015 45 416425. (https://doi.org/10.1016/j.cct.2015.11.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Acosta FM, Sanchez-Delgado G, Martinez-Tellez B, Migueles JH, Amaro-Gahete FJ, Rensen PCN, Llamas-Elvira JM, Blondin DP, Ruiz JR. Sleep duration and quality are not associated with brown adipose tissue volume or activity-as determined by 18F-FDG uptake, in young, sedentary adults. Sleep 2019 42 zsz177. (https://doi.org/10.1093/sleep/zsz177)

    • Search Google Scholar
    • Export Citation
  • 18

    Acosta FM, Sanchez-Delgado G, Martinez-Tellez B, Alcantara JMA, Llamas-Elvira JM, Ruiz JR. Diurnal variations of cold-induced thermogenesis in young, healthy adults: a randomized crossover trial. Clinical Nutrition 2021 40 53115321. (https://doi.org/10.1016/j.clnu.2021.08.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of preparative ultracentrifuge. Journal of Chemical Information and Modeling 1972 53 16891699. (https://doi.org/10.1093/clinchem/18.6.499)

    • Search Google Scholar
    • Export Citation
  • 20

    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985 28 412419. (https://doi.org/10.1007/BF00280883)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care 2004 27 14871495. (https://doi.org/10.2337/diacare.27.6.1487)

  • 22

    Alberti KGMM, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WPT, Loria CM & Smith SC et al.Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009 120 16401645. (https://doi.org/10.1161/CIRCULATIONAHA.109.192644)

    • Search Google Scholar
    • Export Citation
  • 23

    Bedogni G, Bellentani S, Miglioli L, Masutti F, Passalacqua M, Castiglione A, Tiribelli C. The fatty liver index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterology 2006 6 33. (https://doi.org/10.1186/1471-230X-6-33)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Acosta FM, Martinez-Tellez B, Sanchez-Delgado G, Migueles JH, Contreras-Gomez MA, Martinez-Avila WD, Merchan-Ramirez E, Alcantara JMA, Amaro-Gahete FJ & Llamas-Elvira JM et al.Association of objectively measured physical activity with brown adipose tissue volume and activity in young adults. Journal of Clinical Endocrinology and Metabolism 2019 104 223233. (https://doi.org/10.1210/jc.2018-01312)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Sanchez-Delgado G, Acosta FM, Martinez-Tellez B, Finlayson G, Gibbons C, Labayen I, Llamas-Elvira JM, Gil A, Blundell JE, Ruiz JR. Brown adipose tissue volume and 18F-fluorodeoxyglucose uptake are not associated with energy intake in young human adults. American Journal of Clinical Nutrition 2020 111 329339. (https://doi.org/10.1093/ajcn/nqz300)

    • Search Google Scholar
    • Export Citation
  • 26

    Jurado-Fasoli L, Merchan-Ramirez E, Martinez-Tellez B, Acosta FM, Sanchez-Delgado G, Amaro-Gahete FJ, Muñoz Hernandez V, Martinez-Avila WD, Ortiz-Alvarez L & Xu H et al.Association between dietary factors and brown adipose tissue volume/18F-FDG uptake in young adults. Clinical Nutrition 2021 40 19972008. (https://doi.org/10.1016/j.clnu.2020.09.020)

    • Search Google Scholar
    • Export Citation
  • 27

    Sanchez-Delgado G, Martinez-Tellez B, Acosta FM, Virtue S, Vidal-Puig A, Gil A, Llamas-Elvira JM, Ruiz JR. Brown adipose tissue volume and fat content are positively associated with whole-body adiposity in young men, not in women. Diabetes 2021 70 14731485. (https://doi.org/10.2337/db21-0011)

    • Search Google Scholar
    • Export Citation
  • 28

    Acosta FM, Martinez-Tellez B, Blondin DP, Haman F, Rensen PCN, Llamas-Elvira JM, Martinez-Nicolas A, Ruiz JR. Relationship between the daily rhythm of distal skin temperature and brown adipose tissue 18F-FDG uptake in young sedentary adults. Journal of Biological Rhythms 2019 34 533550. (https://doi.org/10.1177/0748730419865400)

    • Search Google Scholar
    • Export Citation
  • 29

    Ahmed BA, Ong FJ, Barra NG, Blondin DP, Gunn E, Oreskovich SM, Szamosi JC, Syed SA, Hutchings EK & Konyer NB et al.Lower brown adipose tissue activity is associated with non-alcoholic fatty liver disease but not changes in the gut microbiota. Cell Reports: Medicine 2021 2 100397. (https://doi.org/10.1016/j.xcrm.2021.100397)

    • Search Google Scholar
    • Export Citation
  • 30

    Karpe F, Pinnick KE. Biology of upper-body and lower-body adipose tissue – link to whole-body phenotypes [Internet]. Nature Reviews: Endocrinology 2015 11 90100. (https://doi.org/10.1038/nrendo.2014.185)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Rothwell NJ, Stock MJ. A role for brown adipose tissue in diet-induced thermogenesis. Obesity Research 1997 5 650656. (https://doi.org/10.1002/j.1550-8528.1997.tb00591.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Blondin DP, Labbé SM, Noll C, Kunach M, Phoenix S, Guérin B, Turcotte ÉE, Haman F, Richard D, Carpentier AC. Selective impairment of glucose but not fatty acid or oxidative metabolism in brown adipose tissue of subjects with type 2 diabetes. Diabetes 2015 64 23882397. (https://doi.org/10.2337/db14-1651)

    • Search Google Scholar
    • Export Citation
  • 33

    Muzik O, Mangner TJ, Leonard WR, Kumar A, Janisse J, Granneman JG. 15O PET measurement of blood flow and oxygen consumption in cold-activated human brown fat. Journal of Nuclear Medicine 2013 54 523531. (https://doi.org/10.2967/jnumed.112.111336)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Bartelt A, John C, Schaltenberg N, Berbée JFP, Worthmann A, Cherradi ML, Schlein C, Piepenburg J, Boon MR & Rinninger F et al.Thermogenic adipocytes promote HDL turnover and reverse cholesterol transport. Nature Communications 2017 8 15010. (https://doi.org/10.1038/ncomms15010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Wang GX, Zhao XY, Meng ZX, Kern M, Dietrich A, Chen Z, Cozacov Z, Zhou D, Okunade AL & Su X et al.The brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis. Nature Medicine 2014 20 14361443. (https://doi.org/10.1038/nm.3713)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Virtue S, Vidal-Puig A. Adipose tissue expandability, lipotoxicity and the metabolic syndrome – an allostatic perspective. Biochimica et Biophysica Acta 2010 1801 338349. (https://doi.org/10.1016/j.bbalip.2009.12.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Saari TJ, Raiko J, U-Din M, Niemi T, Taittonen M, Laine J, Savisto N, Haaparanta-Solin M, Nuutila P, Virtanen KA. Basal and cold-induced fatty acid uptake of human brown adipose tissue is impaired in obesity. Scientific Reports 2020 10 14373. (https://doi.org/10.1038/s41598-020-71197-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    Acosta FM, Martinez-Tellez B, Sanchez-Delgado G, Alcantara JMA, Acosta-Manzano P, Morales-Artacho AJ, Ruiz JR. Physiological responses to acute cold exposure in young lean men. PLoS ONE 2018 13 e0196543. (https://doi.org/10.1371/journal.pone.0196543)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Schilperoort M, Hoeke G, Kooijman S, Rensen PCN. Relevance of lipid metabolism for brown fat visualization and quantification [Internet]. Current Opinion in Lipidology 2016 27 242248. (https://doi.org/10.1097/MOL.0000000000000296)

    • Search Google Scholar
    • Export Citation