Heritability of pubertal timing: detailed evaluation of specific milestones in healthy boys and girls

in European Journal of Endocrinology
View More View Less
  • 1 Department of Growth and Reproduction, Rigshospitalet
  • 2 International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Correspondence should be addressed to A S Busch; Email: alexander.siegfried.busch@regionh.dk
Restricted access

Objective

Pubertal timing is highly heritable. Observational studies were inconclusive concerning a potential sex-specific difference in the parental contribution, while genome-wide association studies highlighted a heterogeneity in the genetic architecture of pubertal timing between sexes. Our objectives were to evaluate the association of timing of pubertal milestones in offspring with parental pubertal timing and to identify the genetic basis of the heterogeneity.

Design

(1.) Population-based mixed cross-sectional/longitudinal cohort (2006–2014, COPENHAGEN Puberty Study) comprising 1381 healthy Danish children including their parents. (2.) UK Biobank-based summary statistics of genetic data on timing of menarche (n = 188 644), voice-break (n = 154 459) and facial hair (n = 161 470).

Methods

(1.) Participants underwent clinical examination(s) including blood sampling. Parental pubertal timing was obtained by questionnaire. Timing of milestones were analyzed using SAS-lifereg. (2.) Genetic correlations between pubertal outcomes were estimated using LD Score regression. Genetic heterogeneity was analyzed using METAL.

Results

We observed significant associations of relative parental pubertal timing with timing of pubertal milestones in offspring of concordant sex, that is, fathers/sons (e.g. testicular enlargement: P = 0.004, β = 0.34 years per relative category) and mothers/daughters (e.g. thelarche: P < 0.001, β = 0.45 years per relative category). Fewer milestones were associated with relative parental pubertal timing in offspring of discordant sex compared to concordant sex. Large-scale genetic data highlight both moderate to strong genetic correlations between timing of menarche, voice-break and facial hair. Out of 434 lead single-nucleotide polymorphisms significantly associated with at least one outcome, 39 exhibited a significant genetic heterogeneity between sexes (P < 1.15 × 10−4).

Conclusion

Our results highlight a distinct genetic heterogeneity of pubertal timing between sexes.

Supplementary Materials

    • Table S1. Genetic loci exhibiting significant heterogeneity between traits
    • Table S2. Genome-wide significant loci associated with pubertal timing
    • Supplementary Figure 1

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 852 852 63
Full Text Views 88 88 3
PDF Downloads 50 50 1
  • 1

    Silventoinen K, Haukka J, Dunkel L, Tynelius P, Rasmussen F. Genetics of pubertal timing and its associations with relative weight in childhood and adult height: the Swedish Young Male Twins Study. Pediatrics 2008 121 e885e891. (https://doi.org/10.1542/peds.2007-1615)

    • Search Google Scholar
    • Export Citation
  • 2

    Malina RM, Ryan RC, Bonci CM. Age at menarche in athletes and their mothers and sisters. Annals of Human Biology 1994 21 417422. (https://doi.org/10.1080/03014469400003432)

    • Search Google Scholar
    • Export Citation
  • 3

    Wohlfahrt-Veje C, Mouritsen A, Hagen CP, Tinggaard J, Mieritz MG, Boas M, Petersen JH, Skakkebæk NE, Main KM. Pubertal onset in boys and girls is influenced by pubertal timing of both parents. Journal of Clinical Endocrinology and Metabolism 2016 101 26672674. (https://doi.org/10.1210/jc.2016-1073)

    • Search Google Scholar
    • Export Citation
  • 4

    Brix N, Ernst A, Lauridsen LLB, Parner E, Støvring H, Olsen J, Henriksen TB, Ramlau-Hansen CH. Timing of puberty in boys and girls: a population-based study. Paediatric and Perinatal Epidemiology 2019 33 7078. (https://doi.org/10.1111/ppe.12507)

    • Search Google Scholar
    • Export Citation
  • 5

    Hollis B, Day FR, Busch AS, Thompson DJ, Soares ALG, Timmers PRHJ, Kwong A, Easton DF, Joshi PK & Timpson NJ et al. Genomic analysis of male puberty timing highlights shared genetic basis with hair colour and lifespan. Nature Communications 2020 11 1536. (https://doi.org/10.1038/s41467-020-14451-5)

    • Search Google Scholar
    • Export Citation
  • 6

    Busch AS, Hagen CP, Main KM, Pereira A, Corvalan C, Almstrup K, Mericq V, Juul A. Genetic variation of follicle-stimulating hormone action is associated with age at testicular growth in boys. Journal of Clinical Endocrinology and Metabolism 2017 102 17401749. (https://doi.org/10.1210/jc.2016-4013)

    • Search Google Scholar
    • Export Citation
  • 7

    Aksglaede L, Sørensen K, Petersen JH, Skakkebaek NE, Juul A. Recent decline in age at breast development: the Copenhagen Puberty Study. Pediatrics 2009 123 e932e939. (https://doi.org/10.1542/peds.2008-2491)

    • Search Google Scholar
    • Export Citation
  • 8

    Sørensen K, Aksglaede L, Petersen JH, Juul A. Recent changes in pubertal timing in healthy Danish boys: associations with body mass index. Journal of Clinical Endocrinology and Metabolism 2010 95 263270. (https://doi.org/10.1210/jc.2009-1478)

    • Search Google Scholar
    • Export Citation
  • 9

    Marshall WA, Tanner JM. Variations in the pattern of pubertal changes in boys. Archives of Disease in Childhood 1970 45 1323. (https://doi.org/10.1136/adc.45.239.13)

    • Search Google Scholar
    • Export Citation
  • 10

    Marshall WA, Tanner JM. Variations in pattern of pubertal changes in girls. Archives of Disease in Childhood 1969 44 291303. (https://doi.org/10.1136/adc.44.235.291)

    • Search Google Scholar
    • Export Citation
  • 11

    Mouritsen A, Søeborg T, Johannsen TH, Aksglaede L, Sørensen K, Hagen CP, Mieritz MG, Frederiksen H, Andersson AM, Juul A. Longitudinal changes in circulating testosterone levels determined by LC-MS/MS and by a commercially available radioimmunoassay in healthy girls and boys during the pubertal transition. Hormone Research in Paediatrics 2014 82 1217. (https://doi.org/10.1159/000358560)

    • Search Google Scholar
    • Export Citation
  • 12

    Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, Vukcevic D, Delaneau O & O’Connell J et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 2018 562 203209. (https://doi.org/10.1038/s41586-018-0579-z)

    • Search Google Scholar
    • Export Citation
  • 13

    Overview of the data QC, code, and GWAS summary output from the 2017 UK Biobank data release. (available at: https://github.com/Nealelab/UK_Biobank_GWAS)

    • Search Google Scholar
    • Export Citation
  • 14

    Day FR, Thompson DJ, Helgason H, Chasman DI, Finucane H, Sulem P, Ruth KS, Whalen S, Sarkar AK & Albrecht E et al. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nature Genetics 2017 49 834841. (https://doi.org/10.1038/ng.3841)

    • Search Google Scholar
    • Export Citation
  • 15

    Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Patterson N, Daly MJ, Price AL, Neale BM. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nature Genetics 2015 47 291295. (https://doi.org/10.1038/ng.3211)

    • Search Google Scholar
    • Export Citation
  • 16

    Zheng J, Erzurumluoglu AM, Elsworth BL, Kemp JP, Howe L, Haycock PC, Hemani G, Tansey K, Laurin C, Early Genetics and Lifecourse Epidemiology (EAGLE) Eczema Consortium et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 2017 33 272279. (https://doi.org/10.1093/bioinformatics/btw613)

    • Search Google Scholar
    • Export Citation
  • 17

    Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nature Communications 2017 8 1826. (https://doi.org/10.1038/s41467-017-01261-5)

    • Search Google Scholar
    • Export Citation
  • 18

    Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 2010 26 21902191. (https://doi.org/10.1093/bioinformatics/btq340)

    • Search Google Scholar
    • Export Citation
  • 19

    Genetic correlation between traits and disorders in the UK Biobank. (available at: https://ukbb-rg.hail.is/)

  • 20

    Day FR, Bulik-Sullivan B, Hinds DA, Finucane HK, Murabito JM, Tung JY, Ong KK, Perry JRB. Shared genetic aetiology of puberty timing between sexes and with health-related outcomes. Nature Communications 2015 6 8842. (https://doi.org/10.1038/ncomms9842)

    • Search Google Scholar
    • Export Citation
  • 21

    Aksglaede L, Olsen LW, Sørensen TIA, Juul A. Forty years trends in timing of pubertal growth spurt in 157,000 Danish school children. PLoS ONE 2008 3 e2728. (https://doi.org/10.1371/journal.pone.0002728)

    • Search Google Scholar
    • Export Citation
  • 22

    Kaplowitz P, Bloch C & Section on Endocrinology, American Academy of Pediatrics. Evaluation and referral of children with signs of early puberty. Pediatrics 2016 137 e20153732. (https://doi.org/10.1542/peds.2015-3732)

    • Search Google Scholar
    • Export Citation
  • 23

    Wehkalampi K, Widén E, Laine T, Palotie A, Dunkel L. Patterns of inheritance of constitutional delay of growth and puberty in families of adolescent girls and boys referred to specialist pediatric care. Journal of Clinical Endocrinology and Metabolism 2008 93 723728. (https://doi.org/10.1210/jc.2007-1786)

    • Search Google Scholar
    • Export Citation
  • 24

    Novembre J, Johnson T, Bryc K, Kutalik Z, Boyko AR, Auton A, Indap A, King KS, Bergmann S & Nelson MR et al. Genes mirror geography within Europe. Nature 2008 456 98101. (https://doi.org/10.1038/nature07331)

    • Search Google Scholar
    • Export Citation
  • 25

    Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, Vukcevic D, Delaneau O & O’Connell J et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 2018 562 203209. (https://doi.org/10.1038/s41586-018-0579-z)

    • Search Google Scholar
    • Export Citation
  • 26

    van den Berg SM, Setiawan A, Bartels M, Polderman TJC, van der Vaart AW, Boomsma DI. Individual differences in puberty onset in girls: bayesian estimation of heritabilities and genetic correlations. Behavior Genetics 2006 36 261270. (https://doi.org/10.1007/s10519-005-9022-y)

    • Search Google Scholar
    • Export Citation
  • 27

    Hou H, Uusküla-Reimand L, Makarem M, Corre C, Saleh S, Metcalf A, Goldenberg A, Palmert MR, Wilson MD. Gene expression profiling of puberty-associated genes reveals abundant tissue and sex-specific changes across postnatal development. Human Molecular Genetics 2017 26 35853599. (https://doi.org/10.1093/hmg/ddx246)

    • Search Google Scholar
    • Export Citation
  • 28

    Clavel C, Grisanti L, Zemla R, Rezza A, Barros R, Sennett R, Mazloom AR, Chung CY, Cai X & Cai CL et al. Sox2 in the dermal papilla niche controls hair growth by fine-tuning BMP signaling in differentiating hair shaft progenitors. Developmental Cell 2012 23 981994. (https://doi.org/10.1016/j.devcel.2012.10.013)

    • Search Google Scholar
    • Export Citation
  • 29

    Morgan MD, Pairo-Castineira E, Rawlik K, Canela-Xandri O, Rees J, Sims D, Tenesa A, Jackson IJ. Genome-wide study of hair colour in UK Biobank explains most of the SNP heritability. Nature Communications 2018 9 5271. (https://doi.org/10.1038/s41467-018-07691-z)

    • Search Google Scholar
    • Export Citation
  • 30

    Busch AS, Hagen CP, Assens M, Main KM, Almstrup K, Juul A. Differential impact of genetic loci on age at thelarche and menarche in healthy girls. Journal of Clinical Endocrinology and Metabolism 2018 103 228234. (https://doi.org/10.1210/jc.2017-01860)

    • Search Google Scholar
    • Export Citation
  • 31

    Casey VA, Dwyer JT, Coleman KA, Krall EA, Gardner J, Valadian I. Accuracy of recall by middle-aged participants in a longitudinal study of their body size and indices of maturation earlier in life. Annals of Human Biology 1991 18 155166. (https://doi.org/10.1080/03014469100001492)

    • Search Google Scholar
    • Export Citation
  • 32

    Koo MM, Rohan TE. Accuracy of short-term recall of age at menarche. Annals of Human Biology 1997 24 6164. (https://doi.org/10.1080/03014469700004782)

    • Search Google Scholar
    • Export Citation
  • 33

    Parent AS, Teilmann G, Juul A, Skakkebaek NE, Toppari J, Bourguignon JP. The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration. Endocrine Reviews 2003 24 668693. (https://doi.org/10.1210/er.2002-0019)

    • Search Google Scholar
    • Export Citation