Effects of dietary fat on insulin secretion in subjects with the metabolic syndrome

in European Journal of Endocrinology
Restricted access

Objective

Impaired insulin secretion and action contribute to the development of type 2 diabetes. Dietary fat modification may improve insulin sensitivity, whereas the effect on insulin secretion is unclear. We investigated the effect of dietary fat modification on insulin secretion in subjects with the metabolic syndrome.

Design

In a 12-week pan-European parallel, randomized controlled dietary intervention trial (LIPGENE), 486 subjects were assigned to four isoenergetic diets: high-fat diets rich in saturated fat (HSFA) or monounsaturated fat (HMUFA) or low-fat, high-complex carbohydrate diets with (LFHCC n-3) or without (LFHCC control) 1.2 g/day of n-3 PUFA supplementation. Insulin secretion was estimated as acute insulin response to glucose (AIRg) and disposition index (DI), modeled from an intravenous glucose tolerance test.

Results

There were no overall effect of the dietary intervention on AIRg and DI in the total cohort, in neither the high-fat nor LFHCC groups. We observed significant diet*fasting glucose category interactions for AIRg (P = 0.021) and DI (P = 0.001) in the high-fat groups. In subjects with normal fasting glucose and preserved first phase insulin secretion, the HMUFA diet increased, whereas the HSFA diet reduced AIRg (P = 0.015) and DI (P = 0.010).

Conclusions

The effects of dietary fat modification on insulin secretion were minor, and only evident in normoglycemic subjects. In this case, the HMUFA diet improved AIRg and DI, as compared to the HSFA diet.

 

     European Society of Endocrinology

All Time Past Year Past 30 Days
Abstract Views 1828 1828 293
Full Text Views 232 232 21
PDF Downloads 84 84 11
  • 1

    CornierMADabeleaDHernandezTLLindstromRCSteigAJStobNRVan PeltREWangHEckelRH. The metabolic syndrome. Endocrine Reviews 2008 29 777–822. (https://doi.org/10.1210/er.2008-0024)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    EckelRHAlbertiKGGrundySMZimmetPZ. The metabolic syndrome. Lancet 2010 375 181–183. (https://doi.org/10.1016/S0140-6736(09)61794-3)

  • 3

    KahnSE. Clinical review 135: the importance of beta-cell failure in the development and progression of type 2 diabetes. Journal of Clinical Endocrinology and Metabolism 2001 86 4047–4058. (https://doi.org/10.1210/jcem.86.9.7713)

    • Search Google Scholar
    • Export Citation
  • 4

    LyssenkoVAlmgrenPAnevskiDPerfektRLahtiKNissenMIsomaaBForsenBHomstromNSalorantaC et al. Predictors of and longitudinal changes in insulin sensitivity and secretion preceding onset of type 2 diabetes. Diabetes 2005 54 166–174. (https://doi.org/10.2337/diabetes.54.1.166)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    HaffnerSMMiettinenHGaskillSPSternMP. Decreased insulin secretion and increased insulin resistance are independently related to the 7-year risk of NIDDM in Mexican-Americans. Diabetes 1995 44 1386–1391. (https://doi.org/10.2337/diab.44.12.1386)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    KahnSE. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia 2003 46 3–19. (https://doi.org/10.1007/s00125-002-1009-0)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    HaffnerSMMiettinenHGaskillSPSternMP. Decreased insulin action and insulin secretion predict the development of impaired glucose tolerance. Diabetologia 1996 39 1201–1207. (https://doi.org/10.1007/BF02658507)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    LilliojaSMottDMSpraulMFerraroRFoleyJERavussinEKnowlerWCBennettPHBogardusC. Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians. New England Journal of Medicine 1993 329 1988–1992. (https://doi.org/10.1056/NEJM199312303292703)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9

    UusitupaMLindiVLouherantaASalopuroTLindstromJTuomilehtoJ & Finnish Diabetes Prevention Study Group. Long-term improvement in insulin sensitivity by changing lifestyles of people with impaired glucose tolerance: 4-year results from the Finnish Diabetes Prevention Study. Diabetes 2003 52 2532–2538. (https://doi.org/10.2337/diabetes.52.10.2532)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    KnowlerWCBarrett-ConnorEFowlerSEHammanRFLachinJMWalkerEANathanDM & Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. New England Journal of Medicine 2002 346 393–403. (https://doi.org/10.1056/NEJMoa012512)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11

    TuomilehtoJLindstromJErikssonJGValleTTHamalainenHIlanne-ParikkaPKeinanen-KiukaanniemiSLaaksoMLouherantaARastasM et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. New England Journal of Medicine 2001 344 1343–1350. (https://doi.org/10.1056/NEJM200105033441801)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12

    OrchardTJTemprosaMGoldbergRHaffnerSRatnerRMarcovinaSFowlerS & Diabetes Prevention Program Research Group. The effect of metformin and intensive lifestyle intervention on the metabolic syndrome: the Diabetes Prevention Program randomized trial. Annals of Internal Medicine 2005 142 611–619. (https://doi.org/10.7326/0003-4819-142-8-200504190-00009)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Ilanne-ParikkaPErikssonJGLindstromJPeltonenMAunolaSHamalainenHKeinanen-KiukaanniemiSLaaksoMValleTTLahtelaJ et al. Effect of lifestyle intervention on the occurrence of metabolic syndrome and its components in the Finnish Diabetes Prevention Study. Diabetes Care 2008 31 805–807. (https://doi.org/10.2337/dc07-1117)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    AstrupARyanLGrunwaldGKStorgaardMSarisWMelansonEHillJO. The role of dietary fat in body fatness: evidence from a preliminary meta-analysis of ad libitum low-fat dietary intervention studies. British Journal of Nutrition 2000 83 (Supplement 1) S25–S32. (https://doi.org/10.1017/S0007114500000921)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15

    RiserusUWillettWCHuFB. Dietary fats and prevention of type 2 diabetes. Progress in Lipid Research 2009 48 44–51. (https://doi.org/10.1016/j.plipres.2008.10.002)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    RiccardiGRivelleseAA. Dietary treatment of the metabolic syndrome–the optimal diet. British Journal of Nutrition 2000 83 (Supplement 1) S143–S148. (https://doi.org/10.1017/S0007114500001082)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17

    WeickertMO. What dietary modification best improves insulin sensitivity and why? Clinical Endocrinology 2012 77 508–512. (https://doi.org/10.1111/j.1365-2265.2012.04450.x)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    MancoMCalvaniMMingroneG. Effects of dietary fatty acids on insulin sensitivity and secretion. Diabetes, Obesity and Metabolism 2004 6 402–413. (https://doi.org/10.1111/j.1462-8902.2004.00356.x)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19

    LaaksonenDEToppinenLKJuntunenKSAutioKLiukkonenKHPoutanenKSNiskanenLMykkanenHM. Dietary carbohydrate modification enhances insulin secretion in persons with the metabolic syndrome. American Journal of Clinical Nutrition 2005 82 1218–1227. (https://doi.org/10.1093/ajcn/82.6.1218)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20

    VessbyBUusitupaMHermansenKRiccardiGRivelleseAATapsellLCNalsenCBerglundLLouherantaARasmussenBM et al. Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: the KANWU Study. Diabetologia 2001 44 312–319. (https://doi.org/10.1007/s001250051620)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Rojo-MartinezGEstevaIRuiz de AdanaMSGarcia-AlmeidaJMTinahonesFCardonaFMorcilloSGarcia-EscobarEGarcia-FuentesESoriguerF. Dietary fatty acids and insulin secretion: a population-based study. European Journal of Clinical Nutrition 2006 60 1195–1200. (https://doi.org/10.1038/sj.ejcn.1602437)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    den BiggelaarLJCJEussenSJPMSepSJSMariAFerranniniEvan GreevenbroekMMvan der KallenCJSchalkwijkCGArtsICWStehouwerCDA Prospective associations of dietary carbohydrate, fat, and protein intake with beta-cell function in the CODAM study. European Journal of Nutrition 2018. (https://doi.org/10.1007/s00394-018-1644-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    GiaccoRCuomoVVessbyBUusitupaMHermansenKMeyerBJRiccardiGRivelleseAA & KANWU Study Group. Fish oil, insulin sensitivity, insulin secretion and glucose tolerance in healthy people: is there any effect of fish oil supplementation in relation to the type of background diet and habitual dietary intake of n-6 and n-3 fatty acids? Nutrition, Metabolism, and Cardiovascular Diseases 2007 17 572–580. (https://doi.org/10.1016/j.numecd.2006.06.006)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24

    ImamuraFMichaRWuJHde Oliveira OttoMCOtiteFOAbioyeAIMozaffarianD. Effects of saturated fat, polyunsaturated fat, monounsaturated fat, and carbohydrate on glucose-insulin homeostasis: A systematic review and meta-analysis of randomised controlled feeding trials. PLOS Medicine 2016 13 e1002087. (https://doi.org/10.1371/journal.pmed.1002087)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    AltmanDGBlandJM. Treatment allocation by minimisation. BMJ 2005 330 843. (https://doi.org/10.1136/bmj.330.7495.843)

  • 26

    TierneyACMcMonagleJShawDIGulsethHLHelalOSarisWHPaniaguaJAGolabek-LeszczynskaIDefoortCWilliamsCM et al. Effects of dietary fat modification on insulin sensitivity and on other risk factors of the metabolic syndrome--LIPGENE: a European randomized dietary intervention study. International Journal of Obesity 2011 35 800–809. (https://doi.org/10.1038/ijo.2010.209)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27

    Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 2001 285 2486–2497. (https://doi.org/10.1001/jama.285.19.2486)

    • Search Google Scholar
    • Export Citation
  • 28

    ShawDITierneyACMcCarthySUpritchardJVermuntSGulsethHLDrevonCABlaakEESarisWHKarlstromB et al. LIPGENE food-exchange model for alteration of dietary fat quantity and quality in free-living participants from eight European countries. British Journal of Nutrition 2009 101 750–759. (https://doi.org/10.1017/S0007114508039962)

    • Search Google Scholar
    • Export Citation
  • 29

    BaeckeJABuremaJFrijtersJE. A short questionnaire for the measurement of habitual physical activity in epidemiological studies. American Journal of Clinical Nutrition 1982 36 936–942. (https://doi.org/10.1093/ajcn/36.5.936)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30

    MansiaGDe BackerGDominiczakACifkovaRFagardRGermanoGGrassiGHeagertyAMKjeldsenSELaurentS 2007 ESH-ESC Guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Blood Pressure 2007 16 135–232. (https://doi.org/10.1080/08037050701461084)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31

    SteilGMVolundAKahnSEBergmanRN. Reduced sample number for calculation of insulin sensitivity and glucose effectiveness from the minimal model. Suitability for use in population studies. Diabetes 1993 42 250–256. (https://doi.org/10.2337/diab.42.2.250)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    BostonRCStefanovskiDMoatePJSumnerAEWatanabeRMBergmanRN. MINMOD Millennium: a computer program to calculate glucose effectiveness and insulin sensitivity from the frequently sampled intravenous glucose tolerance test. Diabetes Technology and Therapeutics 2003 5 1003–1015. (https://doi.org/10.1089/152091503322641060)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33

    VickersAJAltmanDG. Statistics notes: analysing controlled trials with baseline and follow up measurements. BMJ 2001 323 1123–1124. (https://doi.org/10.1136/bmj.323.7321.1123)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    FaschingPRatheiserKSchneeweissBRohacMNowotnyPWaldhauslW. No effect of short-term dietary supplementation of saturated and poly- and monounsaturated fatty acids on insulin secretion and sensitivity in healthy men. Annals of Nutrition and Metabolism 1996 40 116–122. (https://doi.org/10.1159/000177904)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35

    LarssonHElmstahlSBerglundGAhrenB. Habitual dietary intake versus glucose tolerance, insulin sensitivity and insulin secretion in postmenopausal women. Journal of Internal Medicine 1999 245 581–591. (https://doi.org/10.1046/j.1365-2796.1999.00503.x)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    GodslandIFJeffsJARJohnstonDG. Loss of beta cell function as fasting glucose increases in the non-diabetic range. Diabetologia 2004 47 1157–1166. (https://doi.org/10.1007/s00125-004-1454-z)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    MariATuraAPaciniGKautzky-WillerAFerranniniE. Relationships between insulin secretion after intravenous and oral glucose administration in subjects with glucose tolerance ranging from normal to overt diabetes. Diabetic Medicine 2008 25 671–677. (https://doi.org/10.1111/j.1464-5491.2008.02441.x)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38

    ThomsenCRasmussenOLousenTHolstJJFenselauSSchrezenmeirJHermansenK. Differential effects of saturated and monounsaturated fatty acids on postprandial lipemia and incretin responses in healthy subjects. American Journal of Clinical Nutrition 1999 69 1135–1143. (https://doi.org/10.1093/ajcn/69.6.1135)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39

    LopezSBermudezBPachecoYMVillarJAbiaRMurianaFJ. Distinctive postprandial modulation of beta cell function and insulin sensitivity by dietary fats: monounsaturated compared with saturated fatty acids. American Journal of Clinical Nutrition 2008 88 638–644. (https://doi.org/10.1093/ajcn/88.3.638)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40

    BeysenCKarpeFFieldingBAClarkALevyJCFraynKN. Interaction between specific fatty acids, GLP-1 and insulin secretion in humans. Diabetologia 2002 45 1533–1541. (https://doi.org/10.1007/s00125-002-0964-9)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    RoccaASLaGrecaJKalitskyJBrubakerPL. Monounsaturated fatty acid diets improve glycemic tolerance through increased secretion of glucagon-like peptide-1. Endocrinology 2001 142 1148–1155. (https://doi.org/10.1210/endo.142.3.8034)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    CnopMAbdulkarimBBottuGCunhaDAIgoillo-EsteveMMasiniMTuratsinzeJVGriebelTVillateOSantinI RNA sequencing identifies dysregulation of the human pancreatic islet transcriptome by the saturated fatty acid palmitate. Diabetes 2014 63 1978–1993. (https://doi.org/10.2337/db13-1383)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43

    CunhaDAHekermanPLadriereLBazarra-CastroAOrtisFWakehamMCMooreFRasschaertJCardozoAKBellomoE et al. Initiation and execution of lipotoxic ER stress in pancreatic beta-cells. Journal of Cell Science 2008 121 2308–2318. (https://doi.org/10.1242/jcs.026062)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    BeardJCBergmanRNWardWKPorteDJr. The insulin sensitivity index in nondiabetic man. Correlation between clamp-derived and IVGTT-derived values. Diabetes 1986 35 362–369. (https://doi.org/10.2337/diab.35.3.362)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation