MECHANISMS IN ENDOCRINOLOGY: White, brown and pink adipocytes: the extraordinary plasticity of the adipose organ

in European Journal of Endocrinology
View More View Less
  • 1 Section of Neuroscience and Cell Biology, Center of Obesity, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy

Correspondence should be addressed to S Cinti; Email: s.cinti@univpm.it
Free access

In mammals, adipocytes are lipid-laden cells making up the parenchyma of the multi-depot adipose organ. White adipocytes store lipids for release as free fatty acids during fasting periods; brown adipocytes burn glucose and lipids to maintain thermal homeostasis. A third type of adipocyte, the pink adipocyte, has recently been characterised in mouse subcutaneous fat depots during pregnancy and lactation. Pink adipocytes are mammary gland alveolar epithelial cells whose role is to produce and secrete milk. Emerging evidence suggests that they derive from the transdifferentiation of subcutaneous white adipocytes. The functional response of the adipose organ to a range of metabolic and environmental challenges highlights its extraordinary plasticity. Cold exposure induces an increase in the ‘brown’ component of the organ to meet the increased thermal demand; in states of positive energy balance, the ‘white’ component expands to store excess nutrients; finally, the ‘pink’ component develops in subcutaneous depots during pregnancy to ensure litter feeding. At the cell level, plasticity is provided not only by stem cell proliferation and differentiation but also, distinctively, by direct transdifferentiation of fully differentiated adipocytes by the stimuli that induce genetic expression reprogramming and through it a change in phenotype and, consequently function. A greater understanding of adipocyte transdifferentiation mechanisms would have the potential to shed light on their biology as well as inspire novel therapeutic strategies against metabolic syndrome (browning) and breast cancer (pinking).

Abstract

In mammals, adipocytes are lipid-laden cells making up the parenchyma of the multi-depot adipose organ. White adipocytes store lipids for release as free fatty acids during fasting periods; brown adipocytes burn glucose and lipids to maintain thermal homeostasis. A third type of adipocyte, the pink adipocyte, has recently been characterised in mouse subcutaneous fat depots during pregnancy and lactation. Pink adipocytes are mammary gland alveolar epithelial cells whose role is to produce and secrete milk. Emerging evidence suggests that they derive from the transdifferentiation of subcutaneous white adipocytes. The functional response of the adipose organ to a range of metabolic and environmental challenges highlights its extraordinary plasticity. Cold exposure induces an increase in the ‘brown’ component of the organ to meet the increased thermal demand; in states of positive energy balance, the ‘white’ component expands to store excess nutrients; finally, the ‘pink’ component develops in subcutaneous depots during pregnancy to ensure litter feeding. At the cell level, plasticity is provided not only by stem cell proliferation and differentiation but also, distinctively, by direct transdifferentiation of fully differentiated adipocytes by the stimuli that induce genetic expression reprogramming and through it a change in phenotype and, consequently function. A greater understanding of adipocyte transdifferentiation mechanisms would have the potential to shed light on their biology as well as inspire novel therapeutic strategies against metabolic syndrome (browning) and breast cancer (pinking).

Invited Author's profile

Prof. Saverio Cinti is a specialist in internal medicine and anatomic pathology. He has been Professor of Anatomy, School of Medicine, Ancona University, Italy since 1984. Having started work in the field of adipose tissues since 1980 in the lab of Prof. Björntorp (Gothenburg University), he developed the concept of the adipose organ focusing on the plastic properties of adipose tissues and outlined the importance of this plasticity for the future treatment of obesity and related disorders. He described the CLS as the cause of low-grade chronic inflammation in the obese adipose organ. He has authored more than 250 peer reviewed articles. In 2008, he received the Blaise Pascal medal of the European Academy of Science for biology and in 2013 the Wasserman Prize for senior scientist of the European Society of Obesity.

The adipose organ is made up of white and brown adipocytes…

In experimental animals, gross anatomy demonstrates that the adipose organ has a multi-depot organisation (1, 2, 3), consisting of two large subcutaneous depots and of numerous visceral depots (intended here as fat in close apposition to viscera, regardless of their portal or caval venous drainage) located in the visceral cavities of the trunk (Fig. 1). Dissection studies show that the depots have a fairly consistent shape throughout life and that similar shapes are found in different mouse strains. The subcutaneous depots are located in the upper portion of the thorax close to the forelimbs and the neck (anterior) and in the lower part of the abdomen, close to the hind legs (posterior). In animals kept at an environmental temperature close to thermoneutrality (about 28 °C), the adipose organ is predominantly white, with a few brownish areas in the anterior subcutaneous depot at the interscapular, subscapular, axillary, perisucclavian and pericarotid levels; brownish areas in the visceral depots are found mainly around the heart, the aorta and its main branches (mediastinal and perirenal sites). By light microscopy the adipose organ contains two different cell types: brown and white adipocytes (4, 5, 6). ‘Brownish’ areas are those where brown adipocytes are the predominant parenchymal cell type: they correspond to brown adipose tissue (BAT), which is richly innervated and vascularised. ‘White’ areas, where white adipocytes are the predominant cell type, are white adipose tissue (WAT) and show fewer nerves and a lower number of blood vessels. Depot colour is determined by the relative amount of the two cell types and the degree of vascularisation (7). The relative amount of BAT and WAT in the adipose organ is variable, depending on several factors of which age, diet and environmental temperature are the most important. Quantitative histological studies have shown that the vast majority of depots have a mixed composition also in warm-acclimated mice (see below).

Figure 1
Figure 1

Gross anatomy of the adipose organ of adult female 129Sv mice. The subcutaneous and visceral depots were dissected and positioned on a mouse template to show their respective location in the body. The mouse on the left was maintained at temperatures close to thermoneutrality (28 °C for 10 days), whereas the mouse on the right was acclimated to cold (6 °C for 10 days). Browning of the adipose organ is visually evident in the cold-acclimated mouse. The adipose organ is made up of two subcutaneous depots: (A) anterior (deep cervical, superficial cervical, interscapular, subscapular, axillo-thoracic) and (F) posterior (dorso-lumbar, inguinal, gluteal), and of several visceral depots: (B) mediastinal, (C) mesenteric, (D) retroperitoneal and (E) abdomino-pelvic (perirenal, periovarian, parametrial, perivescical). Scale bar: 1 cm. Reproduced with permission. Murano I, Zingaretti CM & Cinti S. The adipose organ of Sv129 mice contains a prevalence of brown adipocytes and shows plasticity after cold exposure. Adipocytes 2005 1 121–130.

Citation: European Journal of Endocrinology 170, 5; 10.1530/EJE-13-0945

White and brown adipocytes display distinctive features by transmission electron microscopy (1, 2, 3). White adipocytes contain a single large lipid droplet occupying about 90% of the cell volume. The nucleus is squeezed to the cell periphery and the cytoplasm forms a very thin rim. The organelles are poorly developed; in particular mitochondria are small, elongated and have short, randomly organised cristae (Fig. 2). Because of these ultrastructural characteristics, these cells are also called unilocular adipocytes.

Figure 2
Figure 2

Transmission electron microscopy of a epididymal WAT white adipocyte from a 3-week-old rat. N, nucleus; m, mitochondria; L, lipid droplet. Scale bar: 3 μm. Reproduced with permission. Reproduced with permission. Cinti S. The Adipose Organ. Milan: Kurtis, 1999.

Citation: European Journal of Endocrinology 170, 5; 10.1530/EJE-13-0945

Brown adipocytes are smaller than white adipocytes, their cytoplasm contains several lipid droplets, a roundish nucleus and numerous, large, generally spherical mitochondria with laminar cristae (Fig. 3). These mitochondria contain a unique protein, uncoupling protein 1 (UCP1), that supports the thermogenic function of brown adipocytes (8, 9). These cells are also called multilocular adipocytes.

Figure 3
Figure 3

Transmission electron microscopy of a interscapular BAT brown adipocyte from a 10-day-old rat. Note the numerous, large and generally spherical mitochondria with laminar cristae (m). N, nucleus; L, lipid droplet; CAP, capillary. Scale bar: 3 μm. Reproduced with permission. Cinti S. The Adipose Organ. Milan: Kurtis, 1999.

Citation: European Journal of Endocrinology 170, 5; 10.1530/EJE-13-0945

The different morphology of white and brown adipocytes underpins their different functional roles. The white adipocyte stores energy (in the form of lipids) that is released between meals: its lipid droplet is spherical because this is the geometrical shape maximising volume and minimising space occupation. The brown adipocyte burns lipids to produce heat: its multilocularity maximises the cytoplasmic–lipid interface, making large amounts of fatty acids available quickly for mitochondrial uncoupling and consequently thermogenesis (8).

Notably, WAT and BAT do not exhibit distinct anatomical boundaries, but rather are found as a seamless continuum in all depots at both the macroscopic and microscopic levels. Indeed, in the areas between WAT and BAT, we described adipocytes with an intermediate morphology between white and brown adipocytes and designated them as paucilocular adipocytes (Fig. 4). Recent data from our laboratory have suggested that paucilocular adipocytes, which are found in all adipose depots, are the population showing the greatest proneness to transdifferentiate into brown adipocytes upon environmental or pharmacological stimulation (see below).

Figure 4
Figure 4

Paucilocular adipocytes. (A) Transmission electron microscopy of subcutaneous fat of a cold acclimated adult mouse (6 °C for 5 days) showing a paucilocular adipocyte with an intermediate morphology between white and brown adipocytes. Note the predominant large central lipid droplet (L) and several small cytoplasmic lipid droplets (l). Mitochondria are numerous and exhibit an intermediate morphology between those typical of white and brown adipocytes (inset: enlargement of squared area in (A). Scale bar: A=5 μm and inset=0.5 μm. (B) UCP1-immunoreactive paucilocular adipocyte found in omental fat from a patient suffering for pheochromocytoma. Note the morphology corresponding to that described in (A). Surrounding (upper and right) white adipocytes are unilocular and UCP1 negative. Scale bar: 10 μm.

Citation: European Journal of Endocrinology 170, 5; 10.1530/EJE-13-0945

In conclusion, both white and brown adipocytes harbour a large amount of lipids in their cytoplasm. However, they serve two almost opposite functions that are essential for survival, to store and to dissipate energy respectively.

…but ‘pink’ adipocytes arise during pregnancy

During pregnancy and lactation the anterior and posterior subcutaneous depots of the female adipose organ turn into an organ whose function is to produce and secrete milk: the mammary gland (1, 10) (Fig. 5). Such transformation involves mainly the parenchyma through the development of milk-secreting lobulo-alveolar glandular structures. This dynamic process is generally referred to as alveologenesis.

Figure 5
Figure 5

Gross anatomy of the adipose organ of a lactating female mouse. Both anterior and posterior subcutaneous depots are transformed into mammary glands. Scale bar: 1.5 cm. Reproduced with permission. Cinti S. The Adipose Organ. Milan: Kurtis, 1999.

Citation: European Journal of Endocrinology 170, 5; 10.1530/EJE-13-0945

Epithelial ducts ending in symmetrical nipples (three in anterior and two in posterior subcutaneous fat) develop before puberty and branch through the subcutaneous depot parenchyma, where in normal conditions white and brown adipocytes account for about 90% of depot volume. In terms of anatomical organisation, the mouse mammary glands are five symmetrical structures, each ending with a nipple; in terms of adipose organ organisation, the subcutaneous depot contains two glands, one anterior and one posterior (corresponding to the anterior and posterior subcutaneous depots respectively), each provided with symmetrical nipples (three anterior and two posterior). During pregnancy, which in mice lasts 21 days, alveoli gradually replace adipose tissue. Well-developed alveoli formed by epithelial cells devoid of lipid droplets, likely deriving from the proliferation of ductal stem cells, are visible already 12–15 days from conception (11, 12). Alveologenesis continues with the appearance of lipid-laden epithelial cells and culminates on days 18–21. Our data suggest that these cells derive from transdifferentiation of subcutaneous white adipocytes (13). We have proposed the name of ‘pink adipocytes’ for these adipocyte-derived milk-producing cells, because: i) they meet the definition of adipocyte, i.e. a parenchymal cell capable of storing large amounts of lipids; ii) they arise exclusively in female subcutaneous depots during pregnancy and lactation; and iii) the pregnant mammary gland is pink at the macroscopic level.

Thus, the adipose organ parenchyma contains three cell types characterised by a discrete morphology and function: i) the white adipocyte stores and secretes lipids; ii) the brown adipocyte produces heat; and iii) the pink adipocyte produces milk (Fig. 6). Each function is critical for individual and species survival. Interestingly, despite their different morphology and physiology, the three cell types nonetheless share the expression of some genes. For example, most of the genes related to lipid metabolism are expressed in all three cells: leptin is expressed in both white (14, 15) and pink adipocytes (16), S-100b is expressed in white (17) and pink adipocytes (18) and perilipin A is expressed in white and brown adipocytes (19). From a physiological point of view, all three types of adipose cells have endocrine properties. White adipocytes secrete a number of adipokines that affect eating behaviour (leptin) (20) and metabolism (e.g. adiponectin, resistin, adipsin) (21). Brown adipocytes also secrete hormones and growth factors (e.g. betatrophin and FGF21) (22, 23, 24). Pink adipocytes, besides milk components, also secrete leptin, which seems to have an important role in preventing obesity in pups (25, 26).

Figure 6
Figure 6

Scheme of the three adipocytes forming the parenchyma of the adipose organ.

Citation: European Journal of Endocrinology 170, 5; 10.1530/EJE-13-0945

Plasticity of the adipose organ

The anatomical, cytological and physiological aspects reviewed above prompt the question of why three different cell types, each playing discrete physiological roles, should all be found in the same organ, the adipose organ. Similarities in morphology and gene expression can to some extent explain their coexistence. Yet distinctive phenotypic aspects underlie striking morphological and functional differences. For instance, some important genes appear to be specific and crucial for the function exerted by each cell type: UCP1 underpins thermogenesis and is unique to brown adipocytes (8, 9), leptin is not found in classic multilocular brown adipocytes (14) and perilipin B is found in pink adipocytes along with a number of epithelial and milk-related genes (27, 28).

White–brown plasticity

Over the last three decades our and other laboratories have collected a large body of evidence documenting that fully differentiated adipocytes have the outstanding physiological ability to transdifferentiate. In particular, mature adipocytes undergo genome reprogramming and turn into a different cell type, serving different physiological roles (15, 29, 30, 31, 32, 33, 34, 35); crucially, the process is reversible. White-to-brown transdifferentiation is essential to meet increased heat production requirements during chronic cold exposure. Cold exposure activates BAT by acting on the sympathetic nervous fibres that directly innervate brown adipocytes at the parenchymal level (36, 37, 38, 39); chronic cold exposure results in branching of noradrenergic parenchymal fibres, significantly increasing BAT sympathetic innervation, a phenomenon that appears to be closely related to white-to-brown transdifferentiation (40, 41). β3-adrenoceptors (AR) are specifically expressed by brown adipocytes. When activated by noradrenaline they drive brown adipocyte thermogenic activation, but are also likely responsible for white-to-brown transdifferentiation. ‘Browning’, i.e. an increase in the brown component of the organ, is detectable even at the macroscopic level in the adipose organ of a mouse kept at 6 °C compared with one acclimated to 28 °C (Fig. 1). The tissue remodelling is partly due to recruitment of precursor cells, especially in interscapular and inguinal subcutaneous depots (42), and partly to direct conversion of a subpopulation of unilocular/paucilocular adipocytes (6, 31, 32, 33, 35, 43). The two processes, which most likely coexist, are driven by the same physiological stimulus through β-AR activation. Cold-exposed mice lacking β3-AR do not undergo browning (32, 43), but precursor development, probably driven by β1-AR, is not hampered in these animals, because preadipocyte development has been documented after administration of β1-AR agonists and lack of development has been demonstrated after administration of β3-AR agonists (43). As also suggested by in vitro findings (44), β3-AR could thus be responsible for white-to-brown transdifferentiation and β1-AR for precursor proliferation and differentiation.

Browning is of remarkable pathophysiological interest, because it could be harnessed to tackle obesity and metabolic syndrome (45, 46, 47, 48). Indeed, ectopic UCP1 expression (49) and expression in white adipocytes of key molecules involved in brown adipocyte differentiation, such as Prdm16 (50), induce obesity resistance and ameliorate insulin sensitivity. Obesity-prone mouse strains have less BAT than obesity-resistant strains (3, 4, 51); mice lacking brown fat (52) and β3-AR (34) are prone to diet-induced obesity; and specific β3-AR agonists curb obesity in obese rats (53, 54, 55).

Warm exposure, ageing and obesity lead to ‘whitening’, which involves a significant reduction in the density of parenchymal noradrenergic nerve fibres in the adipose organ (1, 2, 3). Different gene expression profiles are found in brown adipocytes from different depots (56) and even in UCP1-expressing adipocytes (57). Furthermore, a different gene expression has been found during development in interscapular (anterior subcutaneous depot) and perirenal (visceral depot) brown adipocytes as compared with those found predominantly in white depots, such as the posterior subcutaneous depot (58). These findings have prompted terms such as ‘brite’ and ‘beige’ for a population of UCP1-containing multilocular adipocytes (57, 59). However, we feel that the notion of ‘brown’ should be maintained until different functions are demonstrated for these cells. The different gene expression profiles described in interscapular brown adipocytes and in other depots could merely depend on differences in the extracellular hormonal milieu, the degree and type of innervation, and/or the cell development stage. As mentioned earlier, paucilocular adipocytes, i.e. adipocytes with an intermediate morphology, are found in the areas between BAT and WAT. We documented a varied morphology and degree of UCP1 expression in these adipocytes (43). Some were UCP1-negative, others were UCP1-positive; accordingly, mitochondrial morphology spanned from that typical of white adipocytes to that typical of brown adipocytes, thus accounting for the variable immunoreactivity of these cells for the brown marker UCP1. It is conceivable that UCP1 immunoreactivity is acquired only upon achievement of a given degree of mitochondrial differentiation. The distinctive gene expression profile of brite/beige adipocytes may reflect the density of multilocular adipocytes and their level of differentiation. A true, functional difference between interscapular brown adipocytes and those found in other areas of the organ has not yet been documented in vivo and at single cell level.

A recent paper seems to confirm the direct, reversible transdifferentiation of white adipocytes into brown adipocytes (35). Cold-induced UCP1-expressing adipocytes from posterior subcutaneous fat turned into unilocular adipocytes, expressing genuine white phenotype genes when the animals were exposed to a warm environment, and re-exposure to cold involved a return to the multilocular UCP1 phenotype. Not all white adipocytes seem to have the ability to turn into brown adipocytes, and some white adipocytes might never be able to undergo the phenotype change, possibly because of their distance from noradrenergic fibres. In this connection, we found a positive correlation between the density of brown adipocytes and the density of noradrenergic fibres in the adipose organ of two different mouse strains (5).

The plasticity of the adipose organ raises the question of the origin of adipocytes. Despite contrasting findings from different laboratories (60) our data, including lineage-tracing studies, seem to indicate that endothelial cells of adipose tissue capillaries are able to turn into pericytes and then into either white and brown adipocytes (61, 62, 63, 64, 65, 66). Such unique origin could support their ability to undergo multiple changes before achievement of the adult phenotype.

White–pink plasticity

During pregnancy and lactation, all subcutaneous depots of the adipose organ turn into mammary glands (1, 10). Our morphological studies of the transforming subcutaneous depots seem to suggest that mammary gland alveoli develop in two stages through two different mechanisms. In the first stage of pregnancy, alveoli are constituted of epithelial cells lacking cytoplasmic lipid droplets that could derive from stem cell proliferation (Fig. 7), but in the second stage of pregnancy they are constituted of lipid-laden epithelial cells while subcutaneous fat shrinks progressively (Fig. 8). Ultrastructural data support the astonishing possibility that in the second part of pregnancy subcutaneous adipocytes progressively acquire epithelial-like features, likely under hormonal stimuli, aggregating with similarly committed pink adipocytes and with myoepithelial cells to form adipose tissue-derived milk-secreting alveoli (13) (Fig. 9). To document the striking transdifferentiation of adipocytes into milk-producing glands and establish whether the opposite process occurs during mammary gland involution, we carried out lineage-tracing studies using aP2-cre/R26R and WAP-cre/R26R double transgenic mice respectively. In aP2-cre/R26R mice, about 70% of alveolar epithelial cells expressed the reporter gene in late pregnancy, whereas in WAP-cre/R26R mice most of the adipocytes found in subcutaneous fat post-lactation were positive for the reporter gene. Notably, about 30% of alveolar epithelial cells never stained for the gene during pregnancy, in line with the origin of a large number of alveolar cells from the well-characterised ductal alveolar progenitor cells (10, 11, 12). The transdifferentiation of white adipocytes into pink cells was also confirmed by explants experiments, where both adipose tissue and isolated adipocytes from Rosa26 (Gt(ROSA)26Sor) mice implanted in pregnant WT female mice gave rise to donor-derived glands (68).

Figure 7
Figure 7

Haematoxylin–eosin staining of the subcutaneous adipose depot (mammary gland) from a female mouse at day 10 of pregnancy. In the first stage of pregnancy, the alveoli (asterisk) are constituted of epithelial cells lacking cytoplasmic lipid droplets. D, duct; V, blood vessel. Scale bar: 60 μm.

Citation: European Journal of Endocrinology 170, 5; 10.1530/EJE-13-0945

Figure 8
Figure 8

Subcutaneous adipose depot (mammary gland) from a female mouse at day 17 of pregnancy. Haematoxylin–eosin staining (A and B) shows the appearance of alveoli constituted of lipid-laden epithelial cells (pink adipocytes). B is the enlargement of the area framed in A: most of the alveolar cells are pink adipocytes with large cytoplasmic lipid droplets. Pink adipocytes of well-developed alveoli (with central lumen: L) and of early alveoli (without central lumen: *) show strongly immunoreactive nuclei for the transcription factor Elf5 (C), a master regulator of alveologenesis (67), and are immunoreactive for the milk whey acidic protein (WAP) (D). CAP, capillary; WAT, white adipose tissue. Scale bar: A=50 μm; B=15 μm; C and D=30 μm.

Citation: European Journal of Endocrinology 170, 5; 10.1530/EJE-13-0945

Figure 9
Figure 9

Transmission electron microscopy of pink adipocytes. (A) Pink adipocytes contain large cytoplasmic lipid droplets (L). (B) Enlargement of the pink adipocyte marked by * in A. Abundant stacked rough endoplasmic reticulum (RER) and a distinct basal membrane (BM) are visible. (C) Enlargement of the framed area in (A). Milk granules (G) and microvilli projecting in the early lumen are visible. Scale bars: 2 μm.

Citation: European Journal of Endocrinology 170, 5; 10.1530/EJE-13-0945

Reversible white-to-pink transdifferentiation could shed light on breast cancer biology, as suggested by recent data showing that loss of PPARγ expression by mammary secretory epithelial cells creates a pro-breast tumourigenic environment (69). Notably, PPARγ seems to be a key factor for pink-to-white transdifferentiation in vitro (70).

The obese adipose organ

In 2003, two independent groups in the United States showed that the adipose organ of obese animals and humans is infiltrated by macrophages; the infiltration was found to relate to adipocyte size and to the development of insulin resistance (71, 72). The majority of cytokines with key roles in inducing insulin resistance are expressed by the stroma-vascular fraction of fat (including macrophages) and a minority by the floating fraction formed by mature adipocytes, reflecting the importance of macrophage infiltration in the development of insulin resistance and subsequently type 2 diabetes. Our group found that most of the macrophages infiltrating obese fat are arranged around dead adipocyte remnants into distinctive figures that we denominated crown-like-structures (CLS) (73). In a subsequent paper, we described ultrastructural abnormalities (such as calcium build-up and cholesterol crystals), signs of oxidative stress and NLRP3 inflammasome activation with formation of active caspase 1 in hypertrophic adipocytes from obese mice and suggested that these cells die of pyroptosis, a proinflammatory programmed cell death (74).

Resorption of dead adipocyte remnants, especially the large lipid droplets, is an extended process characterised by a chronic low-grade inflammation similar to that seen in foreign body reactions. Accordingly, CLS may also contain syncytial giant macrophages. To assess whether CLS originate from adipocyte debris, we used Philip Scherer's transgenic model, where white adipocyte apoptotic death is specifically induced by administration of a dimeriser that activates caspase 8 (75). All dead adipocytes gave rise to CLS, in line with our hypothesis (76). The time course of fat histopathology in this model disclosed that CLS form after adipocyte death, demonstrating that this event may be sufficient to recruit macrophages and induce CLS formation (76). Altogether, we think that the death and degeneration of hypertrophic adipocytes, with the consequent exposure to the extracellular milieu of nuclear and cytoplasmic (mainly, lipid droplets) determinants that are normally segregated into the cell, represent the primary events triggering the inflammatory and immune reactions in the obese adipose tissue. This view has been recently reinforced by data from Xu et al. (77), showing the importance of lipid catabolism in the macrophages infiltrating the obese adipose tissue. Interestingly, this view may also predict that autoimmune reactions could develop in obesity, and be possibly involved in some physiopathological aspects of the metabolic syndrome.

Hormone-sensitive lipase knockout mice created by Grant Michell are lean but their fat is characterised by hypertrophic adipocytes (78). These animals exhibited the same CLS density as obese animals (73). Notably, we found a positive correlation between CLS density and adipocyte size both in subcutaneous and visceral fat depots; their density was lower in subcutaneous fat containing larger adipocytes (79). Collectively, these data suggest that visceral adipocytes have a smaller death critical size (size-triggering death) (41), in line with the well-known greater morbidity due to accumulation of visceral fat (80). Interestingly, we failed to detect CLS in either mice or humans with hyperplastic obesity, which is characterised by small adipocytes and the absence of secondary metabolic disorders (73, 81). The positive correlation between adipocyte size and insulin resistance has recently been confirmed in non-obese humans (82).

The plasticity of the adipose organ could be the basis for future treatment, or prevention, of obesity and type 2 diabetes. As mentioned above, white-to-brown transdifferentiation involves a reduction in adipocyte size and an increase in their mitochondrial content. Thus, ‘mild’ white-to-brown transdifferentiation could make white adipocytes less prone to death and turns the adipose organ parenchyma into a ‘healthier’ tissue.

The human adipose organ

As in experimental animals, also in humans the adipose organ is made up of subcutaneous and visceral depots (83, 84, 85, 86, 87). Whereas in rodents, dermal and subcutaneous adipose tissues are separated by a layer of skeletal muscle cells, in humans they are continuous with one another; moreover, subcutaneous adipose tissue is not confined to some areas, but forms an uninterrupted layer throughout the body with the exception of hands and feet. Importantly, mammary and gluteo-femoral subcutaneous adipose tissues are more developed in females than in males. The distribution of the visceral depots is very similar to that described in rodents, but the omental depot is particularly well developed in humans. In lean adults, the human adipose organ accounts for 8–18% of body weight in males and for 14–28% in females (∼5% in monkeys) (88, 89).

Independent of total body fat, body fat distribution is a well-known important risk factor for obesity-associated diseases, with visceral obesity displaying greater morbidity (80). It should be noted, however, that the vast majority of free fatty acids, that are especially involved in the cardiovascular complications of the metabolic syndrome (90), are released by the upper body subcutaneous fat depots (91, 92).

As in small rodents, the human adipose organ contains brown adipocytes organised into typical BAT. The lower surface:volume ratio, hence thermal dispersion, of the human compared with the rodent's body involves lower heat production demands, at least in adults. On the other hand, newborns are characterised by a greater surface:volume ratio and a considerable amount of BAT (93, 94). Human BAT thus seems to undergo an age-related morphofunctional involution (likely, brown-to-white transdifferentiation). The histological and electron microscopic features of human adipose tissue are identical to those of their murine counterpart (95). In particular, UCP1-positive brown adipocytes are found among white adipocytes (96, 97, 98). In human newborns, BAT is found in almost all the areas described in rodents, and UCP1 gene expression has been documented in visceral adipose tissue of lean and obese adult patients. The brown:white adipocyte ratio in the visceral adipose tissue of lean adult humans has been put at 1/100–200 (99).

As in experimental animals, also in humans the adipose organ displays outstanding plasticity. An increased amount of BAT has been described in outdoor workers in northern Europe (100) and in patients with pheochromocytoma, a tumour derived from the cells of the adrenal medullary and characterised by catecholamine secretion (101, 102). Furthermore hibernoma, a rare BAT tumour, has been described in several anatomical areas, including subcutaneous and visceral fat (103).

Brown adipocytes have a strong oxidative metabolism and incorporate high levels of fluorodeoxyglucose, the tracer used in positron emission tomography (PET); this has enabled unexpectedly large amounts of BAT to be detected in adult humans (83, 84, 85, 86, 104, 105). In normal adults, BAT depots are found at the base of the neck, the root of the upper limbs, and the intercostal spaces (106). We found UCP1-positive brown adipocytes in perithyroid fat from adult biopsies. These specimens also contained parenchymal noradrenergic fibres in direct contact with brown adipocytes (Fig. 10) (87, 107), documenting a similar parenchymal innervation of the adipose organ in humans and small mammals. Electron microscopy has disclosed preadipocytes in close proximity to capillary walls in human BAT (87); interestingly, the density of preadipocytes was about five times higher in a case of hibernoma than in normal BAT (108).

Figure 10
Figure 10

Double immunostaining and confocal microscopy of human BAT. The sympathetic nerve fibres (detected by thyrosine hydroxylase immunofluorescence: green) are closely apposed to the surface of UCP1-immunoreactive (red) brown adipocytes. Nuclei are stained by TOTO3 (blue). Scale bar: 10 μm.

Citation: European Journal of Endocrinology 170, 5; 10.1530/EJE-13-0945

Human adipose organ plasticity and therapeutic prospects

As the physiological role of BAT in adult humans continues to be explored, the possibility to expand this energy-dissipating tissue through pharmacological interventions is being hailed as a possible approach to treat obesity and related disorders (109). Functional BAT has clearly been demonstrated in adult humans and proved to contribute to the overall energy balance (83, 84, 85, 86, 110). Cold exposure can recruit BAT to produce non-shivering thermogenesis (111). Moreover, poor BAT activity correlates with ageing, BMI and measures of metabolic disease (112, 113, 114).

It is interesting to note that humans with a reduced brown phenotype of abdominal subcutaneous adipose tissue have reduced insulin sensitivity (115), and human white adipocyte precursors can be induced in vitro to express UCP1 through administration of drugs (116, 117). We recently reported that a white visceral depot (the omentum), which normally contains only unilocular UCP1-negative (white) adipocytes, showed multilocular UCP1-positive (brown) adipocytes in six of 12 patients with pheochromocytoma (118). In these six patients, we also detected several UCP1-positive paucilocular adipocytes, the intermediate phenotype preceding white-to-brown transdifferentiation. In such adipocytes, electron microscopy documented mitochondria with an intermediate morphology between typical white and typical brown. Similar features have been detected in transdifferentiating human brown adipocytes in vitro (119). Taken together, these data suggest that white-to-brown transdifferentiation also occurs in humans and might be harnessed for therapeutic purposes. The master molecular pathways could be the noradrenergic stimulation via the β3-AR signalling, despite the unsuccessful clinical trials performed with β3-AR agonists (120, 121) before PET, and bioptic studies renewed the interest in the topic in 2009. A range of new molecular mechanisms to induce browning have recently been proposed (reviewed in (107)). Among these, secreted factors such as ANP (NPPA), BMP8B, irisin and FGF21 that affect brown adipocyte activation and recruitment seem to be particularly promising for the development of new anti-obesity drugs in the near future (22, 122, 123, 124, 125).

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the review.

Funding

This work was supported by DIABAT Collaborative Project of the European Community's FP7, grant agreement number HEALTH-F2-2011-278373 to S Cinti.

References

  • 1

    Cinti S. The Adipose Organ. Milan: Kurtis, 1999

  • 2

    Cinti S. The adipose organ. Prostaglandins, Leukotrienes, and Essential Fatty Acids 2005 73 915. (doi:10.1016/j.plefa.2005.04.010).

  • 3

    Frontini A, Cinti S. Distribution and development of brown adipocytes in the murine and human adipose organ. Cell Metabolism 2010 11 253256. (doi:10.1016/j.cmet.2010.03.004).

    • Search Google Scholar
    • Export Citation
  • 4

    Murano I, Zingaretti CM, Cinti S. The adipose organ of Sv129 mice contains a prevalence of brown adipocytes and shows plasticity after cold exposure. Adipocytes 2005 1 121130.

    • Search Google Scholar
    • Export Citation
  • 5

    Murano I, Barbatelli G, Giordano A, Cinti S. Noradrenergic parenchymal nerve fiber branching after cold acclimatisation correlates with brown adipocyte density in mouse adipose organ. Journal of Anatomy 2009 214 171178. (doi:10.1111/j.1469-7580.2008.01001.x).

    • Search Google Scholar
    • Export Citation
  • 6

    Vitali A, Murano I, Zingaretti MC, Frontini A, Ricquier D, Cinti S. The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes. Journal of Lipid Research 2012 53 619629. (doi:10.1194/jlr.M018846).

    • Search Google Scholar
    • Export Citation
  • 7

    Nechad M. Structure and development of brown adipose tissue. In Brown Adipose Tissue. Eds P Trayhurn & D Nicholls. London: Edward Arnold, 1986

  • 8

    Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiological Reviews 2004 84 277359. (doi:10.1152/physrev.00015.2003).

    • Search Google Scholar
    • Export Citation
  • 9

    Ricquier D. Respiration uncoupling and metabolism in the control of energy expenditure. Proceedings of the Nutrition Society 2005 64 4752. (doi:10.1079/PNS2004408).

    • Search Google Scholar
    • Export Citation
  • 10

    Richert MM, Schwertfeger KL, Ryder JW, Anderson SM. An atlas of mouse mammary gland development. Journal of Mammary Gland Biology and Neoplasia 2000 5 227241. (doi:10.1023/A:1026499523505).

    • Search Google Scholar
    • Export Citation
  • 11

    Ercan C, van Diest PJ, Vooijs M. Mammary development and breast cancer: the role of stem cells. Current Molecular Medicine 2011 11 270285. (doi:10.2174/156652411795678007).

    • Search Google Scholar
    • Export Citation
  • 12

    Bussard KM, Smith GH. The mammary gland microenvironment directs progenitor cell fate in vivo. International Journal of Cell Biology 2011 2011 451676. (doi:10.1155/2011/451676).

    • Search Google Scholar
    • Export Citation
  • 13

    Morroni M, Giordano A, Zingaretti MC, Boiani R, De Matteis R, Kahn BB, Nisoli E, Tonello C, Pisoschi C, Luchetti MM et al.. Reversible transdifferentiation of secretory epithelial cells into adipocytes in the mammary gland. PNAS 2004 101 1680116806. (doi:10.1073/pnas.0407647101).

    • Search Google Scholar
    • Export Citation
  • 14

    Cinti S, Frederich RC, Zingaretti MC, De Matteis R, Flier JS, Lowell BB. Immunohistochemical localization of leptin and uncoupling protein in white and brown adipose tissue. Endocrinology 1997 138 797804. (doi:10.1210/endo.138.2.4908).

    • Search Google Scholar
    • Export Citation
  • 15

    Cancello R, Zingaretti MC, Sarzani R, Ricquier D, Cinti S. Leptin and UCP1 genes are reciprocally regulated in brown adipose tissue. Endocrinology 1998 139 47474750. (doi:10.1210/endo.139.11.6434).

    • Search Google Scholar
    • Export Citation
  • 16

    Smith-Kirwin SM, O'Connor DM, de Johnston J, Lancey ED, Hassink SG, Funanage VL. Leptin expression in human mammary epithelial cells and breast milk. Journal of Clinical Endocrinology and Metabolism 1998 83 18101813. (doi:10.1210/jcem.83.5.4952).

    • Search Google Scholar
    • Export Citation
  • 17

    Cinti S, Cigolini M, Morroni M, Zingaretti MC. S-100 protein in white preadipocytes: an immunoelectronmicroscopic study. Anatomical Record 1989 224 466472. (doi:10.1002/ar.1092240403).

    • Search Google Scholar
    • Export Citation
  • 18

    Barraclough R, Rudland PS. The S-100-related calcium-binding protein, p9Ka, and metastasis in rodent and human mammary cells. European Journal of Cancer 30A 1994 15701576. (doi:10.1016/0959-8049(94)00320-5).

    • Search Google Scholar
    • Export Citation
  • 19

    Blanchette-Mackie EJ, Dwyer NK, Barber T, Coxey RA, Takeda T, Rondinone CM, Theodorakis JL, Greenberg AS, Londos C. Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes. Journal of Lipid Research 1995 36 12111226.

    • Search Google Scholar
    • Export Citation
  • 20

    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994 372 425432. (doi:10.1038/372425a0).

    • Search Google Scholar
    • Export Citation
  • 21

    Trayhurn P. Hypoxia and adipose tissue function and dysfunction in obesity. Physiological Reviews 2013 93 121. (doi:10.1152/physrev.00017.2012).

    • Search Google Scholar
    • Export Citation
  • 22

    Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, Wu J, Kharitonenkov A, Flier JS, Maratos-Flier E et al.. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes and Development 2012 26 271281. (doi:10.1101/gad.177857.111).

    • Search Google Scholar
    • Export Citation
  • 23

    Yi P, Park JS, Melton DA. Betatrophin: a hormone that controls pancreatic β cell proliferation. Cell 2013 153 747758. (doi:10.1016/j.cell.2013.04.008).

    • Search Google Scholar
    • Export Citation
  • 24

    Villarroya J, Cereijo R, Fillarroya F. An endocrine role for brown adipose tissue? American Journal of Physiology. Endocrinology and Metabolism 2013 305 E567E572. (doi:10.1152/ajpendo.00250.2013).

    • Search Google Scholar
    • Export Citation
  • 25

    Oliver P, Picò C, De Matteis R, Cinti S, Palou A. Perinatal expression of leptin in rat stomach. Developmental Dynamics 2002 223 148154. (doi:10.1002/dvdy.1233).

    • Search Google Scholar
    • Export Citation
  • 26

    Palou A, Sànchez J, Picò C. Nutrient-gene interactions in early life programming: leptin in breast milk prevents obesity later in life. Advances in Experimental Medicine and Biology 2009 646 95104. (doi:10.1007/978-1-4020-9173-5_10).

    • Search Google Scholar
    • Export Citation
  • 27

    Brasaemle DL, Barber T, Wolins NE, Serrero G, Blanchette-Mackie EJ, Londos C. Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein. Journal of Lipid Research 1997 38 22492263.

    • Search Google Scholar
    • Export Citation
  • 28

    Russell TD, Palmer CA, Orlicky DJ, Fischer A, Rudolph MC, Neville MC, McManaman JL. Cytoplasmic lipid droplet accumulation in developing mammary epithelial cells: roles of adipophilin and lipid metabolism. Journal of Lipid Research 2007 48 14631475. (doi:10.1194/jlr.M600474-JLR200).

    • Search Google Scholar
    • Export Citation
  • 29

    Barbatelli G, Morroni M, Vinesi P, Cinti S, Michetti F. S-100 protein in rat brown adipose tissue under different functional conditions: a morphological, immunocytochemical, and immunochemical study. Experimental Cell Research 1993 208 226231. (doi:10.1006/excr.1993.1241).

    • Search Google Scholar
    • Export Citation
  • 30

    Cousin B, Bascands-Viguerie N, Kassis N, Nibbelink M, Ambid L, Casteilla L, Pénicaud L. Cellular changes during cold acclimatation in adipose tissues. Journal of Cellular Physiology 1996 167 285289. (doi:10.1002/(SICI)1097-4652(199605)167:2<285::AID-JCP12>3.0.CO;2-7).

    • Search Google Scholar
    • Export Citation
  • 31

    Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G, Cinti S. Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. American Journal of Physiology. Cell Physiology 2000 279 C670C681.

    • Search Google Scholar
    • Export Citation
  • 32

    Jimenez M, Barbatelli G, Allevi R, Cinti S, Seydoux J, Giacobino JP, Muzzin P, Preitner F. β 3-adrenoceptor knockout in C57BL/6J mice depresses the occurrence of brown adipocytes in white fat. European Journal of Biochemistry 2003 270 699705. (doi:10.1046/j.1432-1033.2003.03422.x).

    • Search Google Scholar
    • Export Citation
  • 33

    Granneman JG, Li P, Zhu Z, Lu Y. Metabolic and cellular plasticity in white adipose tissue I: effects of β3-adrenergic receptor activation. American Journal of Physiology. Endocrinology and Metabolism 2005 289 E608E616. (doi:10.1152/ajpendo.00009.2005).

    • Search Google Scholar
    • Export Citation
  • 34

    Bachman ES, Dhillon H, Zhang CY, Cinti S, Bianco AC, Kobilka BK, Lowell BB. βAR signaling required for diet-induced thermogenesis and obesity resistance. Science 2002 297 843845. (doi:10.1126/science.1073160).

    • Search Google Scholar
    • Export Citation
  • 35

    Rosenwald M, Perdikari A, Rulicke T, Wolfrum C. Bi-directional interconversion of brite and white adipocytes. Nature Cell Biology 2013 15 659667. (doi:10.1038/ncb2740).

    • Search Google Scholar
    • Export Citation
  • 36

    Giordano A, Morroni M, Santone G, Marchesi GF, Cinti S. Tyrosine hydroxylase, neuropeptide Y, substance P, calcitonin gene-related peptide and vasoactive intestinal peptide in nerves of rat periovarian adipose tissue: an immunohistochemical and ultrastructural investigation. Journal of Neurocytology 1996 25 125136. (doi:10.1007/BF02284791).

    • Search Google Scholar
    • Export Citation
  • 37

    Giordano A, Morroni M, Carle F, Gesuita R, Marchesi GF, Cinti S. Sensory nerves affect the recruitment and differentiation of rat periovarian brown adipocytes during cold acclimation. Journal of Cell Science 1998 111 25872594.

    • Search Google Scholar
    • Export Citation
  • 38

    Giordano A, Frontini A, Castellucci M, Cinti S. Presence and distribution of cholinergic nerves in rat mediastinal brown adipose tissue. Journal of Histochemistry and Cytochemistry 2004 52 923930. (doi:10.1369/jhc.3A6246.2004).

    • Search Google Scholar
    • Export Citation
  • 39

    Foster MT, Bartness TJ. Sympathetic but not sensory denervation stimulates white adipocytes proliferation. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 2006 291 R1630R1637. (doi:10.1152/ajpregu.00197.2006).

    • Search Google Scholar
    • Export Citation
  • 40

    Cinti S. Transdifferentiation properties of adipocytes in the adipose organ. American Journal of Physiology. Endocrinology and Metabolism 2009 297 E977E986. (doi:10.1152/ajpendo.00183.2009).

    • Search Google Scholar
    • Export Citation
  • 41

    Cinti S. Reversible physiological transdifferentiation in the adipose organ. Proceedings of the Nutrition Society 2009 68 340349. (doi:10.1017/S0029665109990140).

    • Search Google Scholar
    • Export Citation
  • 42

    Wang QA, Tao C, Gupta RK, Scherer PE. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nature Medicine 2013 19 13381344. (doi:10.1038/nm.3324).

    • Search Google Scholar
    • Export Citation
  • 43

    Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, Giacobino JP, De Matteis R, Cinti S. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. American Journal of Physiology. Endocrinology and Metabolism 2010 298 E1244E1253. (doi:10.1152/ajpendo.00600.2009).

    • Search Google Scholar
    • Export Citation
  • 44

    Bronnikov G, Houstek J, Nedergaard J. β-adrenergic, cAMP-mediated stimulation of proliferation of brown fat cells in primary culture. Mediation via β 1 but not β 3 adrenoceptors. Journal of Biological Chemistry 1992 267 20062013.

    • Search Google Scholar
    • Export Citation
  • 45

    Guerra C, Navarro P, Valverde AM, Arribas M, Bruning J, Kozak LP, Khan CR, Benito M. Brown adipose tissue-specific insulin receptor knockout shows diabetic phenotype without insulin resistance. Journal of Clinical Investigation 2001 108 12051213. (doi:10.1172/JCI13103).

    • Search Google Scholar
    • Export Citation
  • 46

    Nedergaard J, Bengtsson T, Cannon B. New powers of brown fat: fighting the metabolic syndrome. Cell Metabolism 2011 13 238240. (doi:10.1016/j.cmet.2011.02.009).

    • Search Google Scholar
    • Export Citation
  • 47

    Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H, Waurisch C et al.. Brown adipose tissue activity controls triglyceride clearance. Nature Medicine 2011 17 200205. (doi:10.1038/nm.2297).

    • Search Google Scholar
    • Export Citation
  • 48

    Stanford KI, Middelbeek RJ, Townsend KL, An D, Nygaard EB, Hitchcox KM, Markan KR, Nakano KR, Hirshman MF, Tseng YH et al.. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. Journal of Clinical Investigation 2013 123 215223. (doi:10.1172/JCI62308).

    • Search Google Scholar
    • Export Citation
  • 49

    Kopecky J, Hodny Z, Rossmeisl M, Syrovy I, Kozak LP. Reduction of dietary obesity in aP2-Ucp transgenic mice: physiology and adipose tissue distribution. American Journal of Physiology 1996 270 E768E775.

    • Search Google Scholar
    • Export Citation
  • 50

    Seale P, Conroe HM, Estall J, Kajimura S, Frontini A, Ishibashi J, Cohen P, Cinti S, Spiegelman BM. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. Journal of Clinical Investigation 2011 121 96105. (doi:10.1172/JCI44271).

    • Search Google Scholar
    • Export Citation
  • 51

    Almind K, Manieri M, Sivitz WI, Cinti S, Kahn CR. Ectopic brown adipose tissue in muscle provides a mechanism for differences in risk of metabolic syndrome in mice. PNAS 2007 104 23662371. (doi:10.1073/pnas.0610416104).

    • Search Google Scholar
    • Export Citation
  • 52

    Lowell BB, S-Susulic V, Hamann A, Lawitts JA, Himms-Hagen J, Boyer BB, Kozak LP, Flier JS. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 1993 366 740742. (doi:10.1038/366740a0).

    • Search Google Scholar
    • Export Citation
  • 53

    Ghorbani M, Claus TH, Himms-Hagen J. Hypertrophy of brown adipocytes in brown and white adipose tissues and reversal of diet-induced obesity in rats treated with a β3-adrenoceptor agonist. Biochemical Pharmacology 1997 54 121131. (doi:10.1016/S0006-2952(97)00162-7).

    • Search Google Scholar
    • Export Citation
  • 54

    Ghorbani M, Himms-Hagen J. Appearance of brown adipocytes in white adipose tissue during CL 316,243-induced reversal of obesity and diabetes in Zucker fa/fa rats. International Journal of Obesity and Related Metabolic Disorders 1997 21 465475. (doi:10.1038/sj.ijo.0800432).

    • Search Google Scholar
    • Export Citation
  • 55

    Ghorbani M, Himms-Hagen J. Treatment with CL 316,243, a β 3-adrenoceptor agonist, reduces serum leptin in rats with diet- or aging-associated obesity, but not in Zucker rats with genetic (fa/fa) obesity. International Journal of Obesity and Related Metabolic Disorders 1998 22 6365. (doi:10.1038/sj.ijo.0800544).

    • Search Google Scholar
    • Export Citation
  • 56

    Waldén TB, Hansen IR, Timmons JA, Cannon B, Nedergaard J. Recruited vs. nonrecruited molecular signatures of brown, "brite," and white adipose tissues. American Journal of Physiology. Endocrinology and Metabolism 2012 302 E19E31. (doi:10.1152/ajpendo.00249.2011).

    • Search Google Scholar
    • Export Citation
  • 57

    Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J. Chronic peroxisome proliferator-activated receptor γ (PPARγ) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. Journal of Biological Chemistry 2010 285 71537164. (doi:10.1074/jbc.M109.053942).

    • Search Google Scholar
    • Export Citation
  • 58

    Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scimè A, Devarakonda S, Conroe HM, Erdjument-Bromage H et al.. PRDM16 controls a brown fat/skeletal muscle switch. Nature 2008 454 961967. (doi:10.1038/nature07182).

    • Search Google Scholar
    • Export Citation
  • 59

    Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G et al.. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012 150 366376. (doi:10.1016/j.cell.2012.05.016).

    • Search Google Scholar
    • Export Citation
  • 60

    Berry R, Rodeheffer MS. Characterization of the adipocyte cellular lineage in vivo. Nature Cell Biology 2013 15 302308. (doi:10.1038/ncb2696).

    • Search Google Scholar
    • Export Citation
  • 61

    Iyama K, Ohzono K, Usuku G. Electron microscopical studies on the genesis of white adipocytes: differentiation of immature pericytes into adipocytes in transplanted preadipose tissue. Virchows Archiv 1979 31 143155. (doi:10.1007/BF02889932).

    • Search Google Scholar
    • Export Citation
  • 62

    Slavin BG. Fine structural studies on white adipocyte differentiation. Anatomical Record 1979 195 6372. (doi:10.1002/ar.1091950106).

  • 63

    Cinti S, Cigolini M, Bosello O, Bjorntorp P. A morphological study of the adipocyte precursor. Journal of Submicroscopic Cytology and Pathology 1984 16 243251.

    • Search Google Scholar
    • Export Citation
  • 64

    Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE, Tallquist MD, Graff JM. White fat progenitor cells reside in the adipose vasculature. Science 2008 322 583586. (doi:10.1126/science.1156232).

    • Search Google Scholar
    • Export Citation
  • 65

    Tran KV, Gealekman O, Frontini A, Zingaretti MC, Morroni M, Giordano A, Smorlesi A, Perugini J, De Matteis R, Sbarbati A et al.. The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells. Cell Metabolism 2012 15 222229. (doi:10.1016/j.cmet.2012.01.008).

    • Search Google Scholar
    • Export Citation
  • 66

    Gupta RK, Mepani RJ, Kleiner S, Lo JC, Khandekar MJ, Cohen P, Frontini A, Bhowmic DC, Ye L, Cinti S et al.. Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell Metabolism 2012 15 230239. (doi:10.1016/j.cmet.2012.01.010).

    • Search Google Scholar
    • Export Citation
  • 67

    Lee HJ, Ormandi CJ. Elf5, hormones and cell fate. Trends in Endocrinology and Metabolism 2012 23 292298. (doi:10.1016/j.tem.2012.02.006).

  • 68

    De Matteis R, Zingaretti MC, Murano I, Vitali A, Frontini A, Giannulis I, Barbatelli G, Marcucci F, Bordicchia M, Sarzani R et al.. In vivo physiological transdifferentiation of adult adipose cells. Stem Cells 2009 27 27612768. (doi:10.1002/stem.197).

    • Search Google Scholar
    • Export Citation
  • 69

    Apostoli AJ, Skelhorne-Gross GE, Rubino RE, Peterson NT, Di Lena MA, Schneider MM, Senqupta SK, Nicol CJ. Loss of PPARγ expression in mammary secretory epithelial cells creates a pro-breast tumorigenic environment. International Journal Cancer 2014 134 10551066. (doi:10.1002/ijc.28432).

    • Search Google Scholar
    • Export Citation
  • 70

    Yin Y, Yuan H, Wang C, Pattabiraman N, Rao M, Pestell RG, Glazer RI. 3-phosphoinositide-dependent, protein kinase-1 activates the peroxisome proliferator-activated receptor-γ and promotes adipocyte differentiation. Molecular Endocrinology 2006 20 268278. (doi:10.1210/me.2005-0197).

    • Search Google Scholar
    • Export Citation
  • 71

    Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA et al.. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. Journal of Clinical Investigation 2003 112 18211830. (doi:10.1172/JCI200319451).

    • Search Google Scholar
    • Export Citation
  • 72

    Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. Journal of Clinical Investigation 2003 112 17961808. (doi:10.1172/JCI200319246).

    • Search Google Scholar
    • Export Citation
  • 73

    Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, Wang S, Fortier M, Greenberg AS, Obin MS. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. Journal of Lipid Research 2005 46 23472355. (doi:10.1194/jlr.M500294-JLR200).

    • Search Google Scholar
    • Export Citation
  • 74

    Giordano A, Murano I, Mondini E, Perugini J, Smorlesi A, Severi I, Barazzoni R, Scherer PE, Cinti S. Obese adipocytes show ultrastructural features of stressed cells and die of pyroptosis. Journal of Lipid Research 2013 54 24232436. (doi:10.1194/jlr.M038638).

    • Search Google Scholar
    • Export Citation
  • 75

    Pajvani UB, Trujillo ME, Combs TP, Iyengar P, Jelicks L, Roth KA, Kitsis RN, Scherer PE. Fat apoptosis through targeted activation of caspase 8: a new mouse model of inducible and reversible lipoatrophy. Nature Medicine 2005 11 797803. (doi:10.1038/nm1262).

    • Search Google Scholar
    • Export Citation
  • 76

    Murano I, Rutkowski JM, Wang QA, Cho YR, Scherer PE, Cinti S. Time course of histomorphological changes in adipose tissue upon acute lipoatrophy. Nutrition, Metabolism, and Cardiovascular Diseases 2013 23 723731. (doi:10.1016/j.numecd.2012.03.005).

    • Search Google Scholar
    • Export Citation
  • 77

    Xu X, Grijalva A, Skowronski A, van Eijk M, Serlie MJ, Ferrante AW Jr. Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metabolism 2013 18 816830. (doi:10.1016/j.cmet.2013.11.001).

    • Search Google Scholar
    • Export Citation
  • 78

    Wang SP, Laurin N, Himms-Hagen J, Rudnicki MA, Levy E, Robert MF, Pan L, Oligny L, Mitchell GA. The adipose tissue phenotype of hormone-sensitive lipase deficiency in mice. Obesity Research 2001 9 119128. (doi:10.1038/oby.2001.15).

    • Search Google Scholar
    • Export Citation
  • 79

    Murano I, Barbatelli G, Parisani V, Latini C, Muzzonigro G, Castellucci M, Cinti S. Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. Journal of Lipid Research 2008 49 15621568. (doi:10.1194/jlr.M800019-JLR200).

    • Search Google Scholar
    • Export Citation
  • 80

    Bjorntorp P. Metabolic abnormalities in visceral obesity. Annals of Medicine 1992 24 35. (doi:10.3109/07853899209164137).

  • 81

    Valet P, Grujic D, Wade J, Ito M, Zingaretti MC, Soloveva V, Ross SR, Graves RA, Cinti S, Lafontan M et al.. Expression of human α 2-adrenergic receptors in adipose tissue of β 3-adrenergic receptor-deficient mice promotes diet-induced obesity. Journal of Biological Chemistry 2000 275 3479734802. (doi:10.1074/jbc.M005210200).

    • Search Google Scholar
    • Export Citation
  • 82

    Arner E, Westermark PO, Spalding KL, Britton T, Rydén M, Frisén J, Bernard S, Arner P. Adipocyte turnover: relevance to human adipose tissue morphology. Diabetes 2010 59 105109. (doi:10.2337/db09-0942).

    • Search Google Scholar
    • Export Citation
  • 83

    Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A et al.. Identification and importance of brown adipose tissue in adult humans. New England Journal of Medicine 2009 360 15091517. (doi:10.1056/NEJMoa0810780).

    • Search Google Scholar
    • Export Citation
  • 84

    Virtanen KA, Lidell ME, Orava J, Heglind M, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerback S, Nuutila P. Functional brown adipose tissue in healthy adults. New England Journal of Medicine 2009 360 15181525. (doi:10.1056/NEJMoa0808949).

    • Search Google Scholar
    • Export Citation
  • 85

    van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ. Cold-activated brown adipose tissue in healthy men. New England Journal of Medicine 2009 360 15001508. (doi:10.1056/NEJMoa0808718).

    • Search Google Scholar
    • Export Citation
  • 86

    Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, Iwanaga T, Miyagawa M, Kameya T, Nakada K et al.. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 2009 58 15261531. (doi:10.2337/db09-0530).

    • Search Google Scholar
    • Export Citation
  • 87

    Zingaretti MC, Crosta F, Vitali A, Guerrieri M, Frontini A, Cannon B, Nedergaard J, Cinti S. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB Journal 2009 23 31133120. (doi:10.1096/fj.09-133546).

    • Search Google Scholar
    • Export Citation
  • 88

    Pond CM, Mattacks CA. The anatomy of adipose tissue in captive Macaca monkeys and its implications for human biology. Folia Primatologica 1987 48 164185. (doi:10.1159/000156293).

    • Search Google Scholar
    • Export Citation
  • 89

    Prins JB, O'Rahilly S. Regulation of adipose cell number in man. Clinical Science 1997 92 311.

  • 90

    McBride P. Triglycerides and risk for coronary artery disease. Current Atherosclerosis Reports 2008 10 386390. (doi:10.1007/s11883-008-0060-9).

    • Search Google Scholar
    • Export Citation
  • 91

    Jensen MD. Gender differences in regional fatty acid metabolism before and after meal ingestion. Journal of Clinical Investigation 1995 96 22972303. (doi:10.1172/JCI118285).

    • Search Google Scholar
    • Export Citation
  • 92

    Ebbert JO, Jensen MD. Fat depots, free fatty acids, and dyslipidemia. Nutrients 2013 5 498508. (doi:10.3390/nu5020498).

  • 93

    Merklin RJ. Growth and distribution of human fetal brown fat. Anatomical Record 1974 178 637645. (doi:10.1002/ar.1091780311).

  • 94

    Lidell ME, Betz MJ, Dahlqvist Leinhard O, Heglind M, Elander L, Slawik M, Mussack T, Nilsson D, Romu T, Nuutila P et al.. Evidence for two types of brown adipose tissue in humans. Nature Medicine 2013 19 631634. (doi:10.1038/nm.3017).

    • Search Google Scholar
    • Export Citation
  • 95

    Cinti S. The role of brown adipose tissue in human obesity. Nutrition, Metabolism, and Cardiovascular Diseases 2006 16 569574. (doi:10.1016/j.numecd.2006.07.009).

    • Search Google Scholar
    • Export Citation
  • 96

    Lean ME, James WP, Jennings G, Trayhurn P. Brown adipose tissue uncoupling protein content in human infants, children and adults. Clinical Science 1986 71 291297.

    • Search Google Scholar
    • Export Citation
  • 97

    Kortelainen ML, Pelletier G, Ricquier D, Bukowiecki LJ. Immunohistochemical detection of human brown adipose tissue uncoupling protein in an autopsy series. Journal of Histochemistry and Cytochemistry 1993 41 759764. (doi:10.1177/41.5.8468458).

    • Search Google Scholar
    • Export Citation
  • 98

    Garruti G, Ricquier D. Analysis of uncoupling protein and its mRNA in adipose tissue deposits of adult humans. International Journal of Obesity and Related Metabolic Disorders 1992 16 383390.

    • Search Google Scholar
    • Export Citation
  • 99

    Oberkofler H, Dallinger G, Liu YM, Hell E, Krempler F, Patsch W. Uncoupling protein gene: quantification of expression levels in adipose tissues of obese and non-obese humans. Journal of Lipid Research 1997 38 21252133.

    • Search Google Scholar
    • Export Citation
  • 100

    Huttunen P, Hirvonene J, Kinnula V. The occurrence of brown adipose tissue in outdoor workers. European Journal of Applied Physiology and Occupational Physiology 1981 46 339345. (doi:10.1007/BF00422121).

    • Search Google Scholar
    • Export Citation
  • 101

    Lean ME, James WP, Jennings G, Trayhurn P. Brown adipose tissue in patients with phaeochromocytoma. International Journal of Obesity 1986 10 219227.

    • Search Google Scholar
    • Export Citation
  • 102

    Kuji I, Imabayashi E, Minagawa A, Matsuda H, Miyauchi T. Brown adipose tissue demonstrating intense FDG uptake in a patient with mediastinal pheochromocytoma. Annals of Nuclear Medicine 2008 22 231235. (doi:10.1007/s12149-007-0096-x).

    • Search Google Scholar
    • Export Citation
  • 103

    Zancanaro C, Pelosi G, Accordini C, Balercia G, Sbabo L, Cinti S. Immunohistochemical identification of uncoupling protein in human hybernoma. Biology of the Cell 1994 80 7578. (doi:10.1016/0248-4900(94)90021-3).

    • Search Google Scholar
    • Export Citation
  • 104

    Gelfand MJ, O'Hara SM, Curtwright LA, Maclean JR. Premedication to block [18F] FDG uptake in the brown adipose tissue of pediatric and adolescent patients. Pediatric Radiology 2005 35 984990. (doi:10.1007/s00247-005-1505-8).

    • Search Google Scholar
    • Export Citation
  • 105

    Hany TF, Gharehpapagh E, Kamel EM, Buck A, Himms-Hagen J, von Schulthess GK. Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. European Journal of Nuclear Medicine and Molecular Imaging 2002 29 13931398. (doi:10.1007/s00259-002-0902-6).

    • Search Google Scholar
    • Export Citation
  • 106

    Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. American Journal of Physiology. Endocrinology and Metabolism 2007 293 E444E452. (doi:10.1152/ajpendo.00691.2006).

    • Search Google Scholar
    • Export Citation
  • 107

    Smorlesi A, Frontini A, Giordano A, Cinti S. The adipose organ: white–brown adipocyte plasticity and metabolic inflammation. Obesity Reviews 2012 13 (Suppl 2) 8396. (doi:10.1111/j.1467-789X.2012.01039.x).

    • Search Google Scholar
    • Export Citation
  • 108

    Manieri M, Murano I, Fianchini A, Brunelli A, Cinti S. Morphological and immunohistochemical features of brown adipocytes and preadipocytes in a case of human hybernoma. Nutrition, Metabolism, and Cardiovascular Diseases 2010 20 567574. (doi:10.1016/j.numecd.2009.04.020).

    • Search Google Scholar
    • Export Citation
  • 109

    Carruba M, Tonello C, Briscini L, Nisoli E. Advances in pharmacotherapy for obesity. International Journal of Obesity and Related Metabolic Disorders 1998 22 (Suppl 1) S13S16.

    • Search Google Scholar
    • Export Citation
  • 110

    Ouellet V, Labbé SM, Blondin DP, Phoenix S, Guérin B, Haman F, Turcotte EE, Richard D, Carpentier AC. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. Journal of Clinical Investigation 2012 122 545552. (doi:10.1172/JCI60433).

    • Search Google Scholar
    • Export Citation
  • 111

    van der Lans AA, Hoeks J, Brans B, Vijgen GH, Visser MG, Vosselman MJ, Hansen J, Jörgensen JA, Wu J, Mottaghy FM et al.. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. Journal of Clinical Investigation 2013 123 33953403. (doi:10.1172/JCI68993).

    • Search Google Scholar
    • Export Citation
  • 112

    Ouellet V, Routhier-Labadie A, Bellemare W, Lakhal-Chaieb L, Turcotte E, Carpentier AC, Richard D. Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18F-FDG-detected BAT in humans. Journal of Clinical Endocrinology and Metabolism 2011 96 192199. (doi:10.1210/jc.2010-0989).

    • Search Google Scholar
    • Export Citation
  • 113

    Yoneshiro T, Aita S, Matsushita M, Kameya T, Nakada K, Kawai Y, Saito M. Brown adipose tissue, whole-body energy expenditure, and thermogenesis in healthy adult men. Obesity 2011 19 1316. (doi:10.1038/oby.2010.105).

    • Search Google Scholar
    • Export Citation
  • 114

    Yoneshiro T, Aita S, Matsushita M, Kayahara T, Kameya T, Kaway Y, Iwanaga T, Saito M. Recruited brown adipose tissue as an antiobesity agent in humans. Journal of Clinical Investigation 2013 123 34043408. (doi:10.1172/JCI67803).

    • Search Google Scholar
    • Export Citation
  • 115

    Yang X, Enerback S, Smith U. Reduced expression of FOXC2 and brown adipogenic genes in human subjects with insulin resistance. Obesity Research 2003 11 11821191. (doi:10.1038/oby.2003.163).

    • Search Google Scholar
    • Export Citation
  • 116

    Elabd C, Chiellini C, Carmona M, Galitzky J, Cochet O, Petersen R, Pénicaud L, Kristiansen K, Bouloumié A, Casteilla L et al.. Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes. Stem Cells 2009 27 27532760. (doi:10.1002/stem.200).

    • Search Google Scholar
    • Export Citation
  • 117

    Beranger GE, Karbiener M, Barquissau V, Pisani DF, Scheideler M, Amri EZ. In vitro brown and "brite"/"beige" adipogenesis: human cellular models and molecular aspects. Biochimica et Biophysica Acta 2013 1831 905914. (doi:10.1016/j.bbalip.2012.11.001).

    • Search Google Scholar
    • Export Citation
  • 118

    Frontini A, Vitali A, Perugini J, Murano I, Romiti C, Ricquier D, Guerrieri M, Cinti S. White-to-brown transdifferentiation of omental adipocytes in patients affected by pheochromocytoma. Biochimica et Biophysica Acta 2013 1831 950959. (doi:10.1016/j.bbalip.2013.02.005).

    • Search Google Scholar
    • Export Citation
  • 119

    Cigolini M, Cinti S, Brunetti L, Bosello O, Osculati F, Bjorntorp P. Human brown adipose cells in culture. Experimental Cell Research 1985 159 261266. (doi:10.1016/S0014-4827(85)80056-2).

    • Search Google Scholar
    • Export Citation
  • 120

    Larsen TM, Toubro S, van Baak MA, Gottesdiener KM, Larson P, Saris WH, Astrup A. Effect of a 28-d treatment with L-796568, a novel β (3)-adrenergic receptor agonist, on energy expenditure and body composition in obese men. American Journal of Clinical Nutrition 2002 76 780788.

    • Search Google Scholar
    • Export Citation
  • 121

    van Baak MA, Hul GB, Toubro S, Astrup A, Gottesdiener KM, DeSmet M, Saris WH. Acute effect of L-796568, a novel β 3-adrenergic receptor agonist, on energy expenditure in obese men. Clinical Pharmacology and Therapeutics 2002 71 272279. (doi:10.1067/mcp.2002.122527).

    • Search Google Scholar
    • Export Citation
  • 122

    Hondares E, Rosell M, Gonzalez FJ, Giralt M, Iglesias R, Villarroya F. Hepatic FGF21 expression is induced at birth via PPARα in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metabolism 2010 11 206212. (doi:10.1016/j.cmet.2010.02.001).

    • Search Google Scholar
    • Export Citation
  • 123

    Bordicchia M, Liu D, Amri EZ, Ailhaud G, Dessi-Fulgheri P, Zhang C, Takahashi N, Sarzani R, Collins S. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. Journal of Clinical Investigation 2012 122 10221036. (doi:10.1172/JCI59701).

    • Search Google Scholar
    • Export Citation
  • 124

    Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Bostrom EA, Choi JH, Long JZ et al.. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012 481 463468. (doi:10.1038/nature10777).

    • Search Google Scholar
    • Export Citation
  • 125

    Whittle AJ, Carobbio S, Martins L, Slawik M, Hondares E, Vàzquez MJ, Morgan D, Csikasz RI, Gallego R, Rodriguez-Cuenca S et al.. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 2012 149 871885. (doi:10.1016/j.cell.2012.02.066).

    • Search Google Scholar
    • Export Citation

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7216 1584 116
PDF Downloads 7183 1762 128
  • View in gallery

    Gross anatomy of the adipose organ of adult female 129Sv mice. The subcutaneous and visceral depots were dissected and positioned on a mouse template to show their respective location in the body. The mouse on the left was maintained at temperatures close to thermoneutrality (28 °C for 10 days), whereas the mouse on the right was acclimated to cold (6 °C for 10 days). Browning of the adipose organ is visually evident in the cold-acclimated mouse. The adipose organ is made up of two subcutaneous depots: (A) anterior (deep cervical, superficial cervical, interscapular, subscapular, axillo-thoracic) and (F) posterior (dorso-lumbar, inguinal, gluteal), and of several visceral depots: (B) mediastinal, (C) mesenteric, (D) retroperitoneal and (E) abdomino-pelvic (perirenal, periovarian, parametrial, perivescical). Scale bar: 1 cm. Reproduced with permission. Murano I, Zingaretti CM & Cinti S. The adipose organ of Sv129 mice contains a prevalence of brown adipocytes and shows plasticity after cold exposure. Adipocytes 2005 1 121–130.

  • View in gallery

    Transmission electron microscopy of a epididymal WAT white adipocyte from a 3-week-old rat. N, nucleus; m, mitochondria; L, lipid droplet. Scale bar: 3 μm. Reproduced with permission. Reproduced with permission. Cinti S. The Adipose Organ. Milan: Kurtis, 1999.

  • View in gallery

    Transmission electron microscopy of a interscapular BAT brown adipocyte from a 10-day-old rat. Note the numerous, large and generally spherical mitochondria with laminar cristae (m). N, nucleus; L, lipid droplet; CAP, capillary. Scale bar: 3 μm. Reproduced with permission. Cinti S. The Adipose Organ. Milan: Kurtis, 1999.

  • View in gallery

    Paucilocular adipocytes. (A) Transmission electron microscopy of subcutaneous fat of a cold acclimated adult mouse (6 °C for 5 days) showing a paucilocular adipocyte with an intermediate morphology between white and brown adipocytes. Note the predominant large central lipid droplet (L) and several small cytoplasmic lipid droplets (l). Mitochondria are numerous and exhibit an intermediate morphology between those typical of white and brown adipocytes (inset: enlargement of squared area in (A). Scale bar: A=5 μm and inset=0.5 μm. (B) UCP1-immunoreactive paucilocular adipocyte found in omental fat from a patient suffering for pheochromocytoma. Note the morphology corresponding to that described in (A). Surrounding (upper and right) white adipocytes are unilocular and UCP1 negative. Scale bar: 10 μm.

  • View in gallery

    Gross anatomy of the adipose organ of a lactating female mouse. Both anterior and posterior subcutaneous depots are transformed into mammary glands. Scale bar: 1.5 cm. Reproduced with permission. Cinti S. The Adipose Organ. Milan: Kurtis, 1999.

  • View in gallery

    Scheme of the three adipocytes forming the parenchyma of the adipose organ.

  • View in gallery

    Haematoxylin–eosin staining of the subcutaneous adipose depot (mammary gland) from a female mouse at day 10 of pregnancy. In the first stage of pregnancy, the alveoli (asterisk) are constituted of epithelial cells lacking cytoplasmic lipid droplets. D, duct; V, blood vessel. Scale bar: 60 μm.

  • View in gallery

    Subcutaneous adipose depot (mammary gland) from a female mouse at day 17 of pregnancy. Haematoxylin–eosin staining (A and B) shows the appearance of alveoli constituted of lipid-laden epithelial cells (pink adipocytes). B is the enlargement of the area framed in A: most of the alveolar cells are pink adipocytes with large cytoplasmic lipid droplets. Pink adipocytes of well-developed alveoli (with central lumen: L) and of early alveoli (without central lumen: *) show strongly immunoreactive nuclei for the transcription factor Elf5 (C), a master regulator of alveologenesis (67), and are immunoreactive for the milk whey acidic protein (WAP) (D). CAP, capillary; WAT, white adipose tissue. Scale bar: A=50 μm; B=15 μm; C and D=30 μm.

  • View in gallery

    Transmission electron microscopy of pink adipocytes. (A) Pink adipocytes contain large cytoplasmic lipid droplets (L). (B) Enlargement of the pink adipocyte marked by * in A. Abundant stacked rough endoplasmic reticulum (RER) and a distinct basal membrane (BM) are visible. (C) Enlargement of the framed area in (A). Milk granules (G) and microvilli projecting in the early lumen are visible. Scale bars: 2 μm.

  • View in gallery

    Double immunostaining and confocal microscopy of human BAT. The sympathetic nerve fibres (detected by thyrosine hydroxylase immunofluorescence: green) are closely apposed to the surface of UCP1-immunoreactive (red) brown adipocytes. Nuclei are stained by TOTO3 (blue). Scale bar: 10 μm.

  • 1

    Cinti S. The Adipose Organ. Milan: Kurtis, 1999

  • 2

    Cinti S. The adipose organ. Prostaglandins, Leukotrienes, and Essential Fatty Acids 2005 73 915. (doi:10.1016/j.plefa.2005.04.010).

  • 3

    Frontini A, Cinti S. Distribution and development of brown adipocytes in the murine and human adipose organ. Cell Metabolism 2010 11 253256. (doi:10.1016/j.cmet.2010.03.004).

    • Search Google Scholar
    • Export Citation
  • 4

    Murano I, Zingaretti CM, Cinti S. The adipose organ of Sv129 mice contains a prevalence of brown adipocytes and shows plasticity after cold exposure. Adipocytes 2005 1 121130.

    • Search Google Scholar
    • Export Citation
  • 5

    Murano I, Barbatelli G, Giordano A, Cinti S. Noradrenergic parenchymal nerve fiber branching after cold acclimatisation correlates with brown adipocyte density in mouse adipose organ. Journal of Anatomy 2009 214 171178. (doi:10.1111/j.1469-7580.2008.01001.x).

    • Search Google Scholar
    • Export Citation
  • 6

    Vitali A, Murano I, Zingaretti MC, Frontini A, Ricquier D, Cinti S. The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes. Journal of Lipid Research 2012 53 619629. (doi:10.1194/jlr.M018846).

    • Search Google Scholar
    • Export Citation
  • 7

    Nechad M. Structure and development of brown adipose tissue. In Brown Adipose Tissue. Eds P Trayhurn & D Nicholls. London: Edward Arnold, 1986

  • 8

    Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiological Reviews 2004 84 277359. (doi:10.1152/physrev.00015.2003).

    • Search Google Scholar
    • Export Citation
  • 9

    Ricquier D. Respiration uncoupling and metabolism in the control of energy expenditure. Proceedings of the Nutrition Society 2005 64 4752. (doi:10.1079/PNS2004408).

    • Search Google Scholar
    • Export Citation
  • 10

    Richert MM, Schwertfeger KL, Ryder JW, Anderson SM. An atlas of mouse mammary gland development. Journal of Mammary Gland Biology and Neoplasia 2000 5 227241. (doi:10.1023/A:1026499523505).

    • Search Google Scholar
    • Export Citation
  • 11

    Ercan C, van Diest PJ, Vooijs M. Mammary development and breast cancer: the role of stem cells. Current Molecular Medicine 2011 11 270285. (doi:10.2174/156652411795678007).

    • Search Google Scholar
    • Export Citation
  • 12

    Bussard KM, Smith GH. The mammary gland microenvironment directs progenitor cell fate in vivo. International Journal of Cell Biology 2011 2011 451676. (doi:10.1155/2011/451676).

    • Search Google Scholar
    • Export Citation
  • 13

    Morroni M, Giordano A, Zingaretti MC, Boiani R, De Matteis R, Kahn BB, Nisoli E, Tonello C, Pisoschi C, Luchetti MM et al.. Reversible transdifferentiation of secretory epithelial cells into adipocytes in the mammary gland. PNAS 2004 101 1680116806. (doi:10.1073/pnas.0407647101).

    • Search Google Scholar
    • Export Citation
  • 14

    Cinti S, Frederich RC, Zingaretti MC, De Matteis R, Flier JS, Lowell BB. Immunohistochemical localization of leptin and uncoupling protein in white and brown adipose tissue. Endocrinology 1997 138 797804. (doi:10.1210/endo.138.2.4908).

    • Search Google Scholar
    • Export Citation
  • 15

    Cancello R, Zingaretti MC, Sarzani R, Ricquier D, Cinti S. Leptin and UCP1 genes are reciprocally regulated in brown adipose tissue. Endocrinology 1998 139 47474750. (doi:10.1210/endo.139.11.6434).

    • Search Google Scholar
    • Export Citation
  • 16

    Smith-Kirwin SM, O'Connor DM, de Johnston J, Lancey ED, Hassink SG, Funanage VL. Leptin expression in human mammary epithelial cells and breast milk. Journal of Clinical Endocrinology and Metabolism 1998 83 18101813. (doi:10.1210/jcem.83.5.4952).

    • Search Google Scholar
    • Export Citation
  • 17

    Cinti S, Cigolini M, Morroni M, Zingaretti MC. S-100 protein in white preadipocytes: an immunoelectronmicroscopic study. Anatomical Record 1989 224 466472. (doi:10.1002/ar.1092240403).

    • Search Google Scholar
    • Export Citation
  • 18

    Barraclough R, Rudland PS. The S-100-related calcium-binding protein, p9Ka, and metastasis in rodent and human mammary cells. European Journal of Cancer 30A 1994 15701576. (doi:10.1016/0959-8049(94)00320-5).

    • Search Google Scholar
    • Export Citation
  • 19

    Blanchette-Mackie EJ, Dwyer NK, Barber T, Coxey RA, Takeda T, Rondinone CM, Theodorakis JL, Greenberg AS, Londos C. Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes. Journal of Lipid Research 1995 36 12111226.

    • Search Google Scholar
    • Export Citation
  • 20

    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994 372 425432. (doi:10.1038/372425a0).

    • Search Google Scholar
    • Export Citation
  • 21

    Trayhurn P. Hypoxia and adipose tissue function and dysfunction in obesity. Physiological Reviews 2013 93 121. (doi:10.1152/physrev.00017.2012).

    • Search Google Scholar
    • Export Citation
  • 22

    Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, Wu J, Kharitonenkov A, Flier JS, Maratos-Flier E et al.. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes and Development 2012 26 271281. (doi:10.1101/gad.177857.111).

    • Search Google Scholar
    • Export Citation
  • 23

    Yi P, Park JS, Melton DA. Betatrophin: a hormone that controls pancreatic β cell proliferation. Cell 2013 153 747758. (doi:10.1016/j.cell.2013.04.008).

    • Search Google Scholar
    • Export Citation
  • 24

    Villarroya J, Cereijo R, Fillarroya F. An endocrine role for brown adipose tissue? American Journal of Physiology. Endocrinology and Metabolism 2013 305 E567E572. (doi:10.1152/ajpendo.00250.2013).

    • Search Google Scholar
    • Export Citation
  • 25

    Oliver P, Picò C, De Matteis R, Cinti S, Palou A. Perinatal expression of leptin in rat stomach. Developmental Dynamics 2002 223 148154. (doi:10.1002/dvdy.1233).

    • Search Google Scholar
    • Export Citation
  • 26

    Palou A, Sànchez J, Picò C. Nutrient-gene interactions in early life programming: leptin in breast milk prevents obesity later in life. Advances in Experimental Medicine and Biology 2009 646 95104. (doi:10.1007/978-1-4020-9173-5_10).

    • Search Google Scholar
    • Export Citation
  • 27

    Brasaemle DL, Barber T, Wolins NE, Serrero G, Blanchette-Mackie EJ, Londos C. Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein. Journal of Lipid Research 1997 38 22492263.

    • Search Google Scholar
    • Export Citation
  • 28

    Russell TD, Palmer CA, Orlicky DJ, Fischer A, Rudolph MC, Neville MC, McManaman JL. Cytoplasmic lipid droplet accumulation in developing mammary epithelial cells: roles of adipophilin and lipid metabolism. Journal of Lipid Research 2007 48 14631475. (doi:10.1194/jlr.M600474-JLR200).

    • Search Google Scholar
    • Export Citation
  • 29

    Barbatelli G, Morroni M, Vinesi P, Cinti S, Michetti F. S-100 protein in rat brown adipose tissue under different functional conditions: a morphological, immunocytochemical, and immunochemical study. Experimental Cell Research 1993 208 226231. (doi:10.1006/excr.1993.1241).

    • Search Google Scholar
    • Export Citation
  • 30

    Cousin B, Bascands-Viguerie N, Kassis N, Nibbelink M, Ambid L, Casteilla L, Pénicaud L. Cellular changes during cold acclimatation in adipose tissues. Journal of Cellular Physiology 1996 167 285289. (doi:10.1002/(SICI)1097-4652(199605)167:2<285::AID-JCP12>3.0.CO;2-7).

    • Search Google Scholar
    • Export Citation
  • 31

    Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G, Cinti S. Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. American Journal of Physiology. Cell Physiology 2000 279 C670C681.

    • Search Google Scholar
    • Export Citation
  • 32

    Jimenez M, Barbatelli G, Allevi R, Cinti S, Seydoux J, Giacobino JP, Muzzin P, Preitner F. β 3-adrenoceptor knockout in C57BL/6J mice depresses the occurrence of brown adipocytes in white fat. European Journal of Biochemistry 2003 270 699705. (doi:10.1046/j.1432-1033.2003.03422.x).

    • Search Google Scholar
    • Export Citation
  • 33

    Granneman JG, Li P, Zhu Z, Lu Y. Metabolic and cellular plasticity in white adipose tissue I: effects of β3-adrenergic receptor activation. American Journal of Physiology. Endocrinology and Metabolism 2005 289 E608E616. (doi:10.1152/ajpendo.00009.2005).

    • Search Google Scholar
    • Export Citation
  • 34

    Bachman ES, Dhillon H, Zhang CY, Cinti S, Bianco AC, Kobilka BK, Lowell BB. βAR signaling required for diet-induced thermogenesis and obesity resistance. Science 2002 297 843845. (doi:10.1126/science.1073160).

    • Search Google Scholar
    • Export Citation
  • 35

    Rosenwald M, Perdikari A, Rulicke T, Wolfrum C. Bi-directional interconversion of brite and white adipocytes. Nature Cell Biology 2013 15 659667. (doi:10.1038/ncb2740).

    • Search Google Scholar
    • Export Citation
  • 36

    Giordano A, Morroni M, Santone G, Marchesi GF, Cinti S. Tyrosine hydroxylase, neuropeptide Y, substance P, calcitonin gene-related peptide and vasoactive intestinal peptide in nerves of rat periovarian adipose tissue: an immunohistochemical and ultrastructural investigation. Journal of Neurocytology 1996 25 125136. (doi:10.1007/BF02284791).

    • Search Google Scholar
    • Export Citation
  • 37

    Giordano A, Morroni M, Carle F, Gesuita R, Marchesi GF, Cinti S. Sensory nerves affect the recruitment and differentiation of rat periovarian brown adipocytes during cold acclimation. Journal of Cell Science 1998 111 25872594.

    • Search Google Scholar
    • Export Citation
  • 38

    Giordano A, Frontini A, Castellucci M, Cinti S. Presence and distribution of cholinergic nerves in rat mediastinal brown adipose tissue. Journal of Histochemistry and Cytochemistry 2004 52 923930. (doi:10.1369/jhc.3A6246.2004).

    • Search Google Scholar
    • Export Citation
  • 39

    Foster MT, Bartness TJ. Sympathetic but not sensory denervation stimulates white adipocytes proliferation. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 2006 291 R1630R1637. (doi:10.1152/ajpregu.00197.2006).

    • Search Google Scholar
    • Export Citation
  • 40

    Cinti S. Transdifferentiation properties of adipocytes in the adipose organ. American Journal of Physiology. Endocrinology and Metabolism 2009 297 E977E986. (doi:10.1152/ajpendo.00183.2009).

    • Search Google Scholar
    • Export Citation
  • 41

    Cinti S. Reversible physiological transdifferentiation in the adipose organ. Proceedings of the Nutrition Society 2009 68 340349. (doi:10.1017/S0029665109990140).

    • Search Google Scholar
    • Export Citation
  • 42

    Wang QA, Tao C, Gupta RK, Scherer PE. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nature Medicine 2013 19 13381344. (doi:10.1038/nm.3324).

    • Search Google Scholar
    • Export Citation
  • 43

    Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, Giacobino JP, De Matteis R, Cinti S. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. American Journal of Physiology. Endocrinology and Metabolism 2010 298 E1244E1253. (doi:10.1152/ajpendo.00600.2009).

    • Search Google Scholar
    • Export Citation
  • 44

    Bronnikov G, Houstek J, Nedergaard J. β-adrenergic, cAMP-mediated stimulation of proliferation of brown fat cells in primary culture. Mediation via β 1 but not β 3 adrenoceptors. Journal of Biological Chemistry 1992 267 20062013.

    • Search Google Scholar
    • Export Citation
  • 45

    Guerra C, Navarro P, Valverde AM, Arribas M, Bruning J, Kozak LP, Khan CR, Benito M. Brown adipose tissue-specific insulin receptor knockout shows diabetic phenotype without insulin resistance. Journal of Clinical Investigation 2001 108 12051213. (doi:10.1172/JCI13103).

    • Search Google Scholar
    • Export Citation
  • 46

    Nedergaard J, Bengtsson T, Cannon B. New powers of brown fat: fighting the metabolic syndrome. Cell Metabolism 2011 13 238240. (doi:10.1016/j.cmet.2011.02.009).

    • Search Google Scholar
    • Export Citation
  • 47

    Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H, Waurisch C et al.. Brown adipose tissue activity controls triglyceride clearance. Nature Medicine 2011 17 200205. (doi:10.1038/nm.2297).

    • Search Google Scholar
    • Export Citation
  • 48

    Stanford KI, Middelbeek RJ, Townsend KL, An D, Nygaard EB, Hitchcox KM, Markan KR, Nakano KR, Hirshman MF, Tseng YH et al.. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. Journal of Clinical Investigation 2013 123 215223. (doi:10.1172/JCI62308).

    • Search Google Scholar
    • Export Citation
  • 49

    Kopecky J, Hodny Z, Rossmeisl M, Syrovy I, Kozak LP. Reduction of dietary obesity in aP2-Ucp transgenic mice: physiology and adipose tissue distribution. American Journal of Physiology 1996 270 E768E775.

    • Search Google Scholar
    • Export Citation
  • 50

    Seale P, Conroe HM, Estall J, Kajimura S, Frontini A, Ishibashi J, Cohen P, Cinti S, Spiegelman BM. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. Journal of Clinical Investigation 2011 121 96105. (doi:10.1172/JCI44271).

    • Search Google Scholar
    • Export Citation
  • 51

    Almind K, Manieri M, Sivitz WI, Cinti S, Kahn CR. Ectopic brown adipose tissue in muscle provides a mechanism for differences in risk of metabolic syndrome in mice. PNAS 2007 104 23662371. (doi:10.1073/pnas.0610416104).