Supplementary Data

Association Between Monoallelic TSHR Mutations and Congenital Hypothyroidism: A Statistical Approach

Kiyomi Abe, Satoshi Narumi, Ayuko S. Suwanai, Masanori Adachi, Koji Muroya, Yumi Asakura, Keisuke Nagasaki, Takayuki Abe, and Tomonobu Hasegawa

Supplementary Methods .. 2
Supplementary Results ... 3
References ... 4
Acknowledgments .. 5
Supplementary Methods

Functional analyses

Human embryonic kidney (HEK) 293 cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM) (Sigma, St. Louis, MO, USA) supplemented with 50 U/mL penicillin, 50 μg/mL streptomycin and 10% fetal bovine serum.

The wildtype-TSHR expression vector has been described (1). Expression vectors encoding hemagglutinin (HA)-tagged DUOX2 (HA-DUOX2) and myc-tagged DUOXA2 (DUOXA2-myc) were provided by H. Grasberger (2). Three TSHR variants (R519H, L669H and A705Dfs*24) and three DUOX2 variants (E327*, K530* and V779M) were introduced by site-directed mutagenesis (QuickChange XL II Site-Direct Mutagenesis kit; Agilent, Santa Clara, CA, USA).

For assessment of TSHR variants (R519H, L669H and A705Dfs*24), we seeded HEK293 cells into a 96-well plate at 70-80% confluence, and transfected the cells using Lipofectamine 2000 (Invitrogen, Waltham, MA, USA) with 10 ng of each TSHR expressing construct (wildtype or mutant) along with 50 ng of the reporter vector encoding the CRE-luciferase construct (pGL4.29, Promega, Madison, WI, USA). Forty-eight hours after transfection, the cells were incubated with or without 100 U/L bovine TSH (Sigma) in DMEM for 3 hours at 37°C. The luciferase activity was measured using the ONE-Glo Luciferase Assay System (Promega).

For assessment of DUOX2 variants (E327*, K530* and V779M), H2O2-producing capacities were studied in the presence of DUOXA2 with use of Amplex Red kit (Life Technologies, Carlsbad, CA, USA). HEK293 cells were seeded in a 24-well plate and were transfected with DNA (HA-DUOX2 300 ng plus DUOXA2-myc 100 ng) at 70-80% confluence. Forty-eight hours after transfection, cells were harvested, were washed with Phosphate buffered saline (PBS) and were resuspended in 100 μl of Earle’s balanced salt solution (Sigma). We measured extracellular H2O2 production on cells resuspended in the solution with the 1 μM ionomycin (Sigma) and the Amplex Red reagent (Life Technologies).

Statistical analysis

The frequency of permanent CH and transient CH due to biallelic DUOX2 mutations has been reported to be 1:44,000 and 1:29,600, respectively (3, 4). We estimated the the frequency of biallelic and monoallelic DUOX2 mutation. DUOX2 p.H678R is a functional SNP (rs57659670, allele frequency of Japanese 0.067) (4). We calculated the frequency of double heterozygotes in situation that DUOX2 p.H678R is regarded as the mutation.

To estimate the probability of newborn screening (NBS) positivity given mutation carriers, we used a Bayes' theorem as follows (5, 6).

We defined the parameters as

\[P(X) \] probability of \(X \)
\[P(Y) \] probability of \(Y \)
\[P(X|Y) \] conditional probability of \(X \) given \(Y \)

C: Positive NBS result for CH (NBS positivity)
N: Negative NBS result for CH
\(M_{TSHR} \): carrying monoallelic \(TSHR \) mutation
M_{TSR/DUOX2}: carrying double heterozygous mutations in TSHR and DUOX2

By the Bayesian method,
\[
P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)}
\]
\[
P(C|\mathcal{M}) = \frac{P(M|C)P(C)}{P(M)} = \frac{P(M|C)P(C)}{P(M|C)P(C)+P(M|\neg C)P(\neg C)}
\]

Supplementary Results

The frequency of double heterozygotes (monoallelic mutations in TSHR and DUOX2) in the Japanese general population.

The frequency of biallelic DUOX2 mutations was estimated to be 1:17,700 (1/44,000 + 1/29,600) and monoallelic DUOX2 mutations in the general population was estimated to be 1:67 based on the frequency of biallelic DUOX2 mutations and Hardy-Weinberg equation. The frequency of double heterozygotes was estimated to be 0.0087% (1:11,524 [1/172×1/67]).

\[
P(C) : \text{probability of positive NBS result for CH} = \frac{1}{2975}
\]
\[
P(N) : \text{probability of negative NBS result for CH} = \frac{2974}{2975}
\]
\[
P(M_{TSR}|C) : \text{probability of monoallelic TSHR mutation carriers conditional on positive NBS} = \frac{26}{395} = 0.066
\]
\[
P(M_{TSR}|N) : \text{probability of monoallelic TSHR mutation carriers conditional on negative NBS} = \frac{1}{172} = 0.0058
\]
\[
P(M_{DUOX2|C}) : \text{probability of double heterozygotes conditional on positive NBS} = \frac{4}{395} = 0.010
\]
\[
P(M_{DUOX2|\neg C}) : \text{probability of double heterozygotes conditional on negative NBS} = \frac{1}{11524} = 0.000087
\]

The posterior conditional probability of NBS positivity given the monoallelic TSHR mutation carriers was

\[
P(C|M_{TSR}) = \frac{P(M_{TSR}|C)P(C)}{P(M_{TSR}|C)P(C)+P(M_{TSR}|N)P(N)} = \frac{26}{395} \times \frac{1}{2975} = -0.0038 \text{ (0.38%)}
\]

The posterior conditional probability of NBS positivity given the double heterozygotes was

\[
P(C|M_{TSR/DUOX2}) = \frac{P(M_{TSR/DUOX2}|C)P(C)}{P(M_{TSR/DUOX2}|C)P(C)+P(M_{TSR/DUOX2}|\neg C)P(\neg C)} = \frac{4}{395} \times \frac{1}{2975} = -0.038 \text{ (3.8%)}
\]

Odds ratio calculation and posterior probability with taking DUOX2 p. H678R into account

The frequency of double heterozygotes contained DUOX2 p.H678R as a mutation in general population
The frequency of double heterozygotes including DUOX2 p.H678R as a mutation was 1.5% (6 in 395) (95% CI, 0.56-3.3%), which was significantly higher than that in the Japanese general population (P<0.05, Z test for H₀: true frequency=0.087%). The OR for NBS positivity associated with double heterozygotes was 18.

We estimated the posterior probability of NBS positivity given the double heterozygotes. We defined parameters as

\[
P(M_{\text{TSR/DUOX2}}|C) : \text{probability of double heterozygotes conditional on positive NBS} = \frac{6}{395} = 0.015
\]

\[
P(M_{\text{TSR/DUOX2}}|N) : \text{probability of double heterozygotes conditional on negative NBS} = 0.000865
\]

The posterior conditional probability of NBS positivity given the double heterozygotes was

\[
P(C|M_{\text{TSR/DUOX2}}) = \frac{P(M_{\text{TSR/DUOX2}}|C)P(C)}{P(M_{\text{TSR/DUOX2}}|C)P(C)+P(M_{\text{TSR/DUOX2}}|N)P(N)} = \frac{\frac{6}{395} \times \frac{1}{172}}{\frac{6}{395} \times \frac{1}{172} + 0.000865 \times \frac{2974}{2975}} = 0.0056 (0.59%)
\]

References

Acknowledgments

We thank the study participants and their family members. We gratefully acknowledge the contribution of physicians providing clinical data and samples: Dr. Akira Ohtake, Department of Pediatrics, Faculty of Medicine, Saitama Medical University, Saitama, Japan; Dr. Go Ichikawa, Department of Pediatrics, Dokkyo Medical University School of Medicine, Tochigi, Japan; Dr. Goro Sasaki, Department of Pediatrics, Tokyo Dental College Ichikawa General Hospital, Chiba, Japan; Dr. Haruo Mizuno, Departments of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Dr. Hideo Cho, Department of Pediatrics, Kawasaki Municipal Kawasaki Hospital, Kanagawa, Japan; Dr. Hiroko Iwamatsu, Department of Pediatrics, Oita Prefectural Hospital, Oita, Japan; Dr. Hironori Kobayashi, Department of Pediatrics, Shimane University, Faculty of Medicine, Izumo, Japan; Dr. Hiroyuki Shiro, Department of Pediatrics and Neonatology, Yokohama Rosai Hospital, Kanagawa, Japan; Dr. Jun Mori, Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan; Dr. Keisuke Kanda, Department of Pediatrics, Komaki City Hospital, Aichi, Japan; Dr. Kenji Ihara, Department of Pediatrics, Graduate School of Medical sciences, Kyushu University, Fukuoka, Japan; Dr. Kentaro Miyai, Department of Pediatrics and Developmental Biology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan; Dr. Makiko Iwata, Department of Pediatrics, Numazu City Hospital, Shizuoka, Japan; Dr. Makoto Ono, Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, (TMDU), Tokyo, Japan; Dr. Makoto Yoshida, Department of Pediatrics, Japanese Red Cross Ashikaga Hospital, Tochigi, Japan; Dr. Masao Murabayashi, Department of Pediatrics, Numazu City Hospital, Shizuoka, Japan; Dr. Masatsune Itoh, Department of Pediatrics, Kanazawa Medical University, Ishikawa, Japan; Dr. Michiko Okajima, Department of Pediatrics, Kanazawa University, Ishikawa, Japan; Dr. Mika Makimura, Department of Pediatrics, Graduate School of Medical sciences, Kyushu University, Fukuoka, Japan; Dr. Mikako Inokuchi, Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan; Dr. Naoki Hori, Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan; Dr. Nobutake Matsuo, Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan; Dr. Sachiko Kitanaka, Department of Pediatrics, Graduate School of Medicine, The
University of Tokyo, Tokyo, Japan; Dr. Satoshi Okada, Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan; Dr. Satoshi Onishi, Department of Neonatal Medicine, Osaka City General Hospital, Osaka, Japan; Dr. Shin Amemiya, Department of Pediatrics, Saitama Medical University, Saitama, Japan; Dr. Shinobu Fukumura, Department of Pediatrics, Kushiro City General Hospital, Hokkaido, Japan; Dr. Takahiro Mochizuki, Kibounomori Growth and Development Clinic, Osaka, Japan; Dr. Takashi Hamajima, Department of Endocrinology and Metabolism, Aichi Children’s Health and Medical Center, Aichi, Japan; Dr. Tatsuhiko Urakami, Department of Pediatrics, Nihon University Hospital, Tokyo, Japan, Department of Pediatrics, Numazu City Hospital, Tokyo, Japan; Dr. Tomohiro Ishi, Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan; Dr. Tomoko Ichihara, Department of Pediatrics, Takamatsu Red Cross Hospital, Kagawa, Japan; Dr. Toru Yamamoto, Department of Pediatrics, Japan Community Health Care Organization, Kyoto Kuramaguchi Medical Center, Kyoto, Japan; Dr. Yasusada Kawada, Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.

We would like to thank Dr. Kanshi Minamitani, Department of Pediatrics, Teikyo University Chiba Medical Center, Chiba, Japan for the data of blood-spot TSH levels in the newborn screening program; Dr. Matsuo Taniyama, Tokyo Health Service Association, Tokyo, Japan for the data of fasting plasma glucose levels among the general Japanese population.