Search Results

You are looking at 1 - 10 of 24 items for

  • Author: Wilmar Wiersinga x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Wilmar M Wiersinga

About 5%–10% of hypothyroid patients on T4 replacement therapy have persistent symptoms, despite normal TSH levels. It was hoped that T4 + T3 combination therapy might provide better outcomes, but that was not observed according to a meta-analysis of 11 randomized clinical trials comparing T4 monotherapy with T4 + T3 combination therapy. However, the issue is still subject of much research because normal thyroid function tests in serum may not necessarily indicate an euthyroid state in all peripheral tissues. This review evaluates recent developments in the field of T4 + T3 combination therapy. T4 monotherapy is associated with higher serum FT4 levels than in healthy subjects, and subnormal serum FT3 and FT3/FT4 ratios are observed in about 15% and 30% respectively. T4 + T3 combination therapy may mimic more closely thyroid function tests of healthy subjects, but it has not been demonstrated that relatively low serum FT3 or FT3/FT4 ratios are linked to persistent symptoms. One study reports polymorphism Thr92Ala in DIO2 is related to lower serum FT3 levels after thyroidectomy, and that the D2-Ala mutant reduces T4 to T3 conversion in cell cultures. Peripheral tissue function tests such as serum cholesterol reflect thyroid hormone action in target tissues. Using such biochemical markers, patients who had a normal serum TSH during postoperative T4 monotherapy, were mildly hypothyroid, whereas those with a TSH 0.03–≤0.3 mU/L were closest to euthyroidism. Peripheral tissue function tests suggest euthyroidism more often in patients randomized to T4 + T3 rather than that to T4. Preference for T4 + T3 combination over T4 monotherapy was dose-dependently related to the presence of two polymorphisms in MCT10 and DIO2 in one small study. It is not known if persistent symptoms during T4 monotherapy disappear by switching to T4 + T3 combination therapy. The number of patients on T4 + T3 therapy has multiplied in the last decade, likely induced by indiscriminate statements on the internet. Patients are sometimes not just asking but rather demanding this treatment modality. It creates tensions between patients and physicians. Only continued research will answer the question whether or not T4 + T3 combination therapy has true benefits in some patients.

Free access

Wilmar M Wiersinga

Approximately 10% of hypothyroid patients are dissatisfied with the outcome of levothyroxine replacement. It is unlikely that slight over- or under-treatment with thyroxine (T4) explains remaining complaints. Meta-analysis of randomized clinical trials shows no advantage of T4/tri-iodothyronine (T3) combination therapy over T4 monotherapy. However, each of these trials can be criticized, and none is perfect: most of them failed to mimic the physiological ratio of serum free T4 (FT4) to free T3 (FT3) concentrations. Development of a sustained-release T3 preparation given as a single nighttime dose (together with levothyroxine once daily) might maintain physiological serum FT4–FT3 ratio's throughout 24 h. Genetic polymorphisms in deiodinase 2 and thyroid hormone transporters have been associated with well-being, fatigue, depression, and greater improvement on combination therapy. Future trials should target carriers of these polymorphisms to see whether they do better on T4/T3 combination therapy than on T4 monotherapy.

Free access

Gerasimos E Krassas and Wilmar Wiersinga

New studies have shown that smoking may protect against the development of thyroid peroxidase antibodies, which may result in a decreased risk of Hashimoto’s hypothyroidism (HH), whereas it stimulates the development of Graves’ hyperthyroidism (GH). According to the above-mentioned hypothesis, to stop smoking would decrease the risk of GH but increase the risk of HH. Also, smoking has been identified as one of the risk factors for the development or worsening of eye changes after 131I treatment of GH. Additionally, the outcome of medical treatment of Graves’ ophthalmopathy (GO) is less favourable in smokers as compared to non-smokers. There is concern also about the effect of passive smoking on autoimmune thyroid disease. In a recent study it has been shown that the latter may have a deleterious effect on childhood GO.

Free access

Grigoris Effraimidis and Wilmar M Wiersinga

The last 10 years have seen some progress in understanding the etiology of autoimmune thyroid disease (AITD). The female preponderance can now be explained – at least in part – by fetal microchimerism and X-chromosome inactivation. The number of identified susceptibility genes for AITD is increasing (among others now including TSHR, TG, HLA, CTLA4, PTPN22, CD40, FCRL3, IL2RA, and FOXP3), but these genes together probably do not explain more than about 10% of the heritability of AITD. As twin studies indicate that genes contribute for 70% of AITD, it follows that there must be many more loci, each of them contributing a little. While the genetic studies have clarified why various autoimmune diseases so often cluster in the same patient, the molecular mechanism of action of these genetic polymorphisms (frequently located in introns) has hardly been explained. Polymorphisms in AITD susceptibility genes may become helpful in clinical practice, e.g. in assessing risk of recurrent Graves' hyperthyroidism (GH) after a course of antithyroid drugs. Moderate alcohol intake decreases the risk on overt GH and overt Hashimoto's hypothyroidism. Current smokers – as well known – are at increased risk for Graves' disease, but – surprisingly – at diminished risk for Hashimoto's thyroiditis. Low selenium and low vitamin D levels might increase the risk of developing AITD, but data are still inconclusive. Current options for preventive interventions in subjects at risk to develop AITD are very limited.

Restricted access

Ria Adriaanse, Johannes A Romijn, Erik Endert, and Wilmar M Wiersinga

The nocturnal TSH surge was studied in controls, in 34 patients with hypothalamic/pituitary disease and in 21 patients with primary hypothyroidism. It was absent in 5/12 hypothyroid patients and in 5/22 euthyroid patients with hypothalamic/pituitary disease (42% vs 23%. NS). Central hypothyroidism relative to euthyroidism was associated with a lower absolute (0.3±0.4 vs 0.9±1.0 mU/l, p<0.05) and relative (24±31 vs 63±51%, p<0.05) nocturnal rise in TSH. In primary hypothyroidism, the nocturnal TSH surge was absent in eight often patients with overt, in one of five patients with mild and in none of six patients with subclinical hypothyroidism. The relative nocturnal rise in TSH was normal in mild (54±33%) and subclinical (92±69%), but decreased in overt hypothyroidism (2±10%). Plasma T4 was positively and 09.00 plasma TSH negatively related to the relative nocturnal TSH surge in primary hypothyroidism, but not in central lesions. In both conditions, however, a positive relationship was observed between the relative nocturnal TSH surge and the relative increase of TSH to TRH. In conclusion: (a) The nocturnal TSH surge is usually absent in overt hypothyroidism but present in mild primary hypothyroidism and equivocal in central hypothyroidism. This limits its usefulness as an adjunct in the diagnosis of central hypothyroidism. (b) The magnitude of the nocturnal TSH surge in patients with hypothalamic/pituitary disease or primary hypothyroidism is directly related to the TSH response to TRH, and thus appears to be determined by the directly releasable TSH pool of the pituitary.

Restricted access

Wilmar M. Wiersinga, Harrison J. L. Frank, Inder J. Chopra, and David H. Solomon


The interrelationship between hepatic nuclear T3 receptors and glucose metabolism was studied in 8 diabetic rats and 8 paired control animals.

Serum glucose (mean ± sem, normal vs. diabetic, 167 ± 11 vs. 470 ± 41 mg/100 ml, P < 0.001) and plasma glucagon (183 ± 8.5 vs. 370 ± 29 pg/ml, P < 0.001) were higher in diabetic animals than in controls; serum insulin was lower but not significantly (59 ± 19 vs. 24 ± 12 μU/ml). Serum T4 (4.1 ± 0.53 vs. 0.8 ± 0.27 μg/100 ml, P < 0.005) and T3 (77.3 ± 3.2 vs. 41.7 ± 12.1 ng/100 ml, P < 0.05) were lower in diabetic rats than in controls. Hepatic concentration of non-protein sulfhydryl-groups was also moderately (∼ 19%) lower in diabetic rats than in controls (4.62 ± 0.11 vs. 3.75 ± 0.24 μmol/g, P < 0.02).

The maximal binding capacity (MBC) of the binding of [125I]T3 to isolated rat liver nuclei was significantly decreased in the diabetic rats (368 ± 37 vs. 232 ± 36 fmol/mg DNA, P < 0.01; mean decrease 38%); the affinity constant Ka) was also lower but not significantly (1.60 ± 0.13 vs. 1.25 ± 0.13 109 L/M, 0.05 < P < 0.1). Addition of 1 mm dithiothreitol (DTT) enhanced the Ka of nuclear binding of T3 similarly in the controls and the diabetics. However, it did not restore the decreased MBC of nuclear binding of T3 in diabetic rats to the level of the controls.

The decrease in MBC of hepatic nuclei for T3 did not correlate (P < 0.05) with the decrease in serum T3, serum T4, or hepatic non-protein sulfhydryl-groups. There was, however, a significant negative correlation of MBC of T3 with serum glucose and with plasma glucagon. These data suggest a regulatory role of glucose metabolism (or glucagon) in modulation of binding of T3 by hepatic nuclear T3 receptors.

Restricted access

Maria F Wesche, Monique M Tiel-v-Buul, Nico J Smits, and Wilmar M Wiersinga

Wesche MF, Tiel-v-Buul MM, Smits NJ, Wiersinga WM. Reduction in goiter size by 131I therapy in patients with non-toxic multinodular goiter. Eur J Endocrinol 1995;132:86–7. ISSN 0804–4643

A retrospective follow-up study of 131I treatment was performed in 10 females (median age 48 years, range 40–74 years) with non-toxic multinodular goiter. The median dose of 131I given was 20 mCi (range 14–65 mCi). Thyroid volume was measured by ultrasonography. The median follow-up period was 26 months (range 12–68 months). Nine patients had a reduction of goiter size: thyroid volume decreased from 88 ± 14.9 ml (mean±sem) to 49 ± 10.9 ml 1 year after 131I treatment. The relative decrease of goiter size was 48% after 1 year (N = 9) and 59% after 2 years (N = 5). One patient did not respond and was referred for operation. Side effects were mild spontaneously resolving radiation thyroiditis in one patient and subclinical hypothyroidism in four patients. In conclusion, 131I treatment of non-toxic goiter is an effective treatment at the expense of post-radiation (subclinical) hypothyroidism.

Maria F Wesche, Academic Medical Center, University of Amsterdam, Department of Internal Medicine, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands

Restricted access

Anita Boelen, Marianne C Platvoet-ter Schiphorst, Nico van Rooijen, and Wilmar M Wiersinga

Boelen A, Platvoet-ter Schiphorst MC, van Rooijen N, Wiersinga WM. Selective macrophage depletion in the liver does not prevent the development of the sick euthyroid syndrome in the mouse. Eur J Endocrinol 1996;134:513–8. ISSN 0804–4643

A decreased serum triiodothyronine (T3) level is one of the main characteristics of the sick euthyroid syndrome, caused mainly by a decreased 5′-deiodination of thyroxine (T4) in the liver. Cytokines have been implicated in the pathogenesis of the changes in thyroid hormone metabolism during illness. We therefore investigated the role of cytokines produced by the liver macrophages (Kupffer cells) in the development of the sick euthyroid syndrome, which was induced in mice by a single injection of bacterial endotoxin (lipopolysaccharide) or by 24-h starvation. Experiments were carried out with or without previous selective depletion of liver macrophages by intravenous administration of liposome-encapsulated dichloromethylene diphosphonate. Relative to saline-injected pair-fed controls, the administration of lipopolysaccharide caused a decrease of serum T3 and T4 and liver 5′-deiodinase mRNA. Selective depletion of liver macrophages did not affect these changes. Starvation for 24 h decreased serum T3 and T4, associated with a slight decrease of liver 5′-deiodinase mRNA. There were no differences between macrophage-depleted and non-depleted animals in this respect. In summary, selective depletion of liver macrophages did not affect the decrease in serum T3, T4 or liver 5′-deiodinase mRNA induced by lipopolysaccharide or 24-h starvation in mice. We conclude that cytokines produced by Kupffer cells are not involved in the pathogenesis of the sick euthyroid syndrome in this experimental model.

A Boelen, Department of Endocrinology, F5-171 Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands

Free access

Peter W Potgieser, Wilmar M Wiersinga, Noortje I Regensburg, and Maarten P Mourits


To describe volumes of orbital fat (FV) and extraocular muscles (MV) in Graves' orbitopathy (GO) as a function of the duration of GO.


i) Cross-sectional survey among 95 consecutive patients with untreated GO who had been referred to the combined thyroid–eye clinics of our university hospital. ii) Longitudinal survey among 39 of the 95 patients who did not receive any therapeutic intervention and were followed for 1 year.


A computed tomography (CT)-based and well-validated method for calculating orbital soft tissues. In order to neutralize sex differences, results are expressed as ratios of FV:orbital volume (OV) and MV:OV.


i) Patients with GO duration of >1 year had greater FV:OV (0.65 vs 0.55, P=0.004), similar MV:OV (0.22 vs 0.21, not significant (NS)), and more proptosis (22 mm vs 21 mm, P=0.03) as compared to those with shorter duration. ii) As compared to baseline, after 1 year, FV:OV had increased (0.56 vs 0.63, P=0.000), MV:OV had not changed (0.19 vs 0.19, NS), proptosis was higher (20 mm vs 21 mm, P=0.003), and clinical activity scores had become lower (2 vs 1, P=0.02) (median values).


CT images show that a longer duration of GO is associated with a higher orbital FV. Extraocular MV, however, is not associated with GO duration; rather, it is related to the severity of GO.

Free access

Peter H Bisschop, Arno W Toorians, Erik Endert, Wilmar M Wiersinga, Louis J Gooren, and Eric Fliers

Objective: Estrogen and androgen administration modulate the pituitary–thyroid axis through alterations in thyroid hormone-binding globulin (TBG) metabolism, but the effects of sex steroids on extrathyroidal thyroxine (T4) to triiodothyronine (T3) conversion in humans are unknown.

Design and methods: We studied 36 male-to-female and 14 female-to-male euthyroid transsexuals at baseline and after 4 months of hormonal treatment. Male-to-female transsexuals were treated with cyproterone acetate (CA) 100 mg/day alone (n=10) or in combination with either oral ethinyl estradiol (or-EE) 100 μg/day (n=14) or transdermal 17β-estradiol (td-E) 100 μg twice a week (n=12). Female-to-male transsexuals were treated with i.m. testosterone 250 mg twice a week. A t-test was used to test for differences within groups and ANOVAwith post hoc analysis to test for differences between the groups.

Results: Or-EE increased TBG (100 ± 12%, P<.001) and testosterone decreased TBG (−14 ± 4%, P =0.01), but free T4 did not change. Td-E and CA did not affect TBG concentrations. TSH was not different between groups at baseline or after treatment. CA decreased T3/T4 ratios (−9 ± 3%, P=0.04), suggesting that T4 to T3 conversion was lower. Testosterone increased T3/T4 ratios (30 ± 9%, P=0.02), which probably reflects higher T4 to T3 conversion.

Conclusion: Oral but not transdermal estradiol increases TBG, whereas testosterone lowers TBG. Testosterone increases T3/T4 ratios. Estradiol does not affect T3/T4 ratios, irrespective of the route of administration.