Search Results

You are looking at 1 - 3 of 3 items for

  • Author: TK Hansen x
Clear All Modify Search
Free access

BS Hansen, K Raun, KK Nielsen, PB Johansen, TK Hansen, B Peschke, J Lau, PH Andersen and M Ankersen

NN703 is a novel orally active GH secretagogue (GHS) derived from ipamorelin. NN703 stimulates GH release from rat pituitary cells in a dose-dependent manner with a potency and efficacy similar to that of GHRP-6. The effect is inhibited by known GHS antagonists, but not by a GH-releasing hormone antagonist. Binding of (35)S-MK677 to the human type 1A GHS receptor (GHS-R 1A) stably expressed on BHK cells was inhibited by GHRP-6 and MK677 as expected. NN703 was also able to inhibit the binding of (35)S-MK677. However, the observed K(i) value was lower than expected, as based on the observed potencies regarding GH release from rat pituitary cells. Similarly, the effect of NN703 on the GHS-R 1A-induced inositol phosphate turnover in these cells showed a lower potency, when compared with GHRP-6 and MK677, than that observed in rat pituitary cells. The effect of i.v. administration of NN703 on GH and cortisol release was studied in swine. The potency and efficacy of NN703 on GH release were determined to be 155+/-23 nmol/kg and 91+/-7 ng GH/ml plasma respectively. A 50% increase of cortisol, compared with basal levels, was observed for all the tested doses of NN703, but no dose-dependency was shown. The effect of NN703 on GH release after i. v. and oral dosing in beagle dogs was studied. NN703 dose-dependently increased the GH release after oral administration. At the highest dose (20 micromol/kg), a 35-fold increase in peak GH concentration was observed (49.5+/-17.8 ng/ml, mean+/-s.e.m.). After a single i.v. dose of 1 micromol/kg the peak GH plasma concentration was elevated to 38.5+/-19.6 ng/ml (mean+/-s.e.m.) approximately 30 min after dosing and returned to basal level after 360 min. The oral bioavailability was 30%. The plasma half-life of NN703 was 4.1+/-0.4 h. A long-term biological effect of NN703 was demonstrated in a rat study, where the body weight gain was measured during a 14-day once daily oral challenge with 100 micromol/kg. The body weight gain was significantly increased after 14 days as compared with a vehicle-treated group. In summary, we here describe an orally active and GH specific secretagogue, NN703. This compound acts through a similar mechanism as GHRP-6, but has a different receptor pharmacology. NN703 induced GH release in both swine and dogs after i.v. and/or p.o. administration, had a high degree of GH specificity in swine and significantly increased the body weight gain in rats.

Free access

R Dall, J Kanaley, TK Hansen, N Moller, JS Christiansen, H Hosoda, K Kangawa and JO Jorgensen

OBJECTIVE: To characterise plasma levels of the recently identified endogenous ligand for the GH secretagogue receptor (ghrelin) during submaximal aerobic exercise in healthy adults and in GH-deficient adults. DESIGN: Eight healthy males (mean+/-s.e. age, 40.8+/-2.9 years) and eight hypopituitary males with verified GH deficiency (mean+/-s.e. age, 40.8+/-4.7 years) underwent a baseline test of their peak aerobic capacity (VO(2) peak) and lactate threshold (LT) on a cycle ergometer, as well as an evaluation of body composition. The patients were then studied on two occasions in random order when they exercised for 45 min at their LT. On one occasion, GH replacement had been discontinued from the evening before, whereas on the other occasion they received their evening GH in addition to an intravenous infusion of GH (0.4 IU) during exercise the following day. The healthy subjects exercised at their LT on one occasion without GH. RESULTS: The patients were significantly more obese and had lower VO(2) max (corrected for body weight) and LT as compared with the control subjects. Exercise induced a peak in serum GH concentrations after 45 min in the control group (11.43+/-3.61 microg/l). Infusion of GH in the patients resulted in a peak level after 45 min, whereas no increase was detected when exercising without GH (9.77+/-2.40 (GH) vs 0.11+/-0.07 microg/l (no GH)). Plasma ghrelin levels did not change significantly with time in either study, and no correlations were detected between ghrelin levels and parameters such as GH and IGF-I levels, age or body composition. Plasma ghrelin levels were significantly lower during the study period with GH as compared with the study with no GH. CONCLUSIONS: Submaximal aerobic exercise of an intensity sufficient to stimulate GH release was not associated with significant alterations in plasma ghrelin concentrations, which indicated that systemic ghrelin is not involved in the exercise-induced stimulation of GH secretion. The observation that ghrelin levels were lower during GH replacement suggests that GH may feedback-inhibit systemic ghrelin release.

Free access

CH Gravholt, R Leth-Larsen, AL Lauridsen, S Thiel, TK Hansen, U Holmskov, RW Naeraa and JS Christiansen

OBJECTIVE: Studies in animals and humans indicate that growth hormone (GH) and insulin-like growth factor-I (IGF-I) modulate immune function. Recently, it was reported that GH therapy increased the level of mannan-binding lectin (MBL) in normal patients, and that treatment of acromegalics with pegvisomant decreased the levels of MBL. The effect on MBL was thought to be due to a specific action of GH, since IGF-I treatment did not affect MBL. Whether it is advantageous or not to have high or low levels of MBL is not known. Likewise, it is not clear how the modifications induced by GH affect immune function. In the present study we examined whether GH or hormone replacement therapy (HRT) in Turner syndrome (TS) influence the serum concentrations of MBL and two other proteins partaking in the innate immune defence, surfactant protein D (SP-D) and vitamin D binding protein (DBP). DESIGN: Study 1: a double-blind crossover study of 12 healthy TS adolescents examined during treatment with either placebo or GH for 2 months, and compared with a control group. Study 2: triple-blind crossover study of 9 healthy TS adolescents randomized to treatment with placebo, GH or GH+17beta-estradiol. Study 3: 60 adult TS patients (55 received HRT) compared with 59 age-matched controls. Study 4: 27 patients with TS were examined before and during sex hormone replacement with 17beta-estradiol and norethisterone and compared with age-matched controls (n=24). METHODS: Measurement of MBL, SP-D, DBP, and other inflammation markers. RESULTS: Study 1: the levels of MBL (P=0.002) and SP-D (P=0.012) increased during GH treatment, whereas no changes were observed in comparison with controls. DBP was unchanged by GH, but was significantly higher in TS compared with controls (P=0.017). Study 2: treatment with GH increased MBL (P=0.045) and SP-D (P=0.05) concentrations in TS, while treatment with GH+17beta-estradiol did not increase levels further. DBP was unchanged by treatment. Study 3: levels of MBL, SP-D, and DBP were similar in adult TS and control subjects. Study 4: DBP levels decreased in response to HRT, while MBL and SPD levels were unchanged. Levels of all three plasma proteins were similar to controls. CONCLUSION: We show that treatment with GH significantly increases MBL and SP-D concentrations in TS, while HRT marginally decreases DBP. Whether the present findings, suggesting a link between the endocrine and the immune system, have clinical consequences needs to be studied further.