Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Shigeru Suzuki x
  • All content x
Clear All Modify Search
Restricted access

Shigeru Matsuzaki, Mitsuo Suzuki, and Koei Hamana

Abstract.

Effect of chronic methylthiouracil (MTU) treatment on the thyroid arginase activity and thyroidal concentration of arginine, ornithine and other amino acids was studied in the rat. The activity of thyroid arginase increased significantly at 15 days of MTU treatment and the elevated enzyme activity was reduced to normal by l-thyroxine (T4) injection. The thyroidal concentration of polyamines was increased by MTU and decreased by T4 with the exception of spermine. The thyroidal concentration of arginine and lysine, a substrate and an inhibitor for arginase respectively decreased significantly, while that of ornithine remained unchanged after MTU treatment. T4 injected to MTU-pretreated rats restored the decreased arginine concentration to normal. These results suggest that ornithine supply for polyamine biosynthesis is regulated by the level of both arginase and lysine in the thyroid.

Restricted access

Shigeru Suzuki, Kumihiro Matsuo, Yoshiya Ito, Atsushi Kobayashi, Takahide Kokumai, Akiko Furuya, Osamu Ueda, Tokuo Mukai, Koichi Yano, Kenji Fujieda, Akimasa Okuno, Yusuke Tanahashi, and Hiroshi Azuma

Background: POU1F1 encodes both PIT-1α, which plays pivotal roles in pituitary development and GH, PRL and TSHB expression, and the alternatively spliced isoform PIT-1β, which contains an insertion of 26-amino acids (β-domain) in the transactivation domain of PIT-1α due to the use of an alternative splice acceptor at the end of the first intron. PIT-1β is expressed at much lower levels than PIT-1α and represses endogenous PIT-1α transcriptional activity. Although POU1F1 mutations lead to combined pituitary hormone deficiency (CPHD), no patients with β-domain mutations have been reported.

Results: Here, we report that a three-generation family exhibited different degrees of CPHD, including growth hormone deficiency with intrafamilial variability of prolactin/TSH insufficiency and unexpected prolactinoma occurrence. The CPHD was due to a novel POU1F1 heterozygous variant (c.143-69T>G) in intron 1 of PIT-1α (RefSeq number NM_000306) or as c.152T>G (p.Ile51Ser) in exon 2 of PIT-1β (NM_001122757). Gene splicing experiments showed that this mutation yielded the PIT-1β transcript without other transcripts. Lymphocyte PIT-1β mRNA expression was significantly higher in the patients with the heterozygous mutation than a control. A luciferase reporter assay revealed that the PIT-1β-Ile51Ser mutant repressed PIT-1α and abolished transactivation capacity for the rat prolactin promoter in GH3 pituitary cells.

Conclusions: We describe, for the first time, that PIT-1β mutation can cause CPHD through a novel genetic mechanism, such as PIT-1β overexpression, and that POU1F1 mutation might be associated with a prolactinoma. Analysis of new patients and long-term follow-up are needed to clarify the characteristics of PIT-1β mutations.