Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Paraskevi Salpea x
Clear All Modify Search
Full access

Ricardo Correa, Paraskevi Salpea and Constantine A Stratakis

Carney complex (CNC) is a rare autosomal dominant syndrome, characterized by pigmented lesions of the skin and mucosa, cardiac, cutaneous and other myxomas and multiple endocrine tumors. The disease is caused by inactivating mutations or large deletions of the PRKAR1A gene located at 17q22–24 coding for the regulatory subunit type I alpha of protein kinase A (PKA) gene. Most recently, components of the complex have been associated with defects of other PKA subunits, such as the catalytic subunits PRKACA (adrenal hyperplasia) and PRKACB (pigmented spots, myxomas, pituitary adenomas). In this report, we review CNC, its clinical features, diagnosis, treatment and molecular etiology, including PRKAR1A mutations and the newest on PRKACA and PRKACB defects especially as they pertain to adrenal tumors and Cushing's syndrome.

Full access

Maya B Lodish, Bo Yuan, Isaac Levy, Glenn D Braunstein, Charalampos Lyssikatos, Paraskevi Salpea, Eva Szarek, Alexander S Karageorgiadis, Elena Belyavskaya, Margarita Raygada, Fabio Rueda Faucz, Louise Izatt, Caroline Brain, James Gardner, Martha Quezado, J Aidan Carney, James R Lupski and Constantine A Stratakis

Objective

We have recently reported five patients with bilateral adrenocortical hyperplasia (BAH) and Cushing's syndrome (CS) caused by constitutive activation of the catalytic subunit of protein kinase A (PRKACA). By doing new in-depth analysis of their cytogenetic abnormality, we attempted a better genotype–phenotype correlation of their PRKACA amplification.

Design

This study is a case series.

Methods

Molecular cytogenetic, genomic, clinical, and histopathological analyses were performed in five patients with CS.

Results

Reinvestigation of the defects of previously described patients by state-of-the-art molecular cytogenetics showed complex genomic rearrangements in the chromosome 19p13.2p13.12 locus, resulting in copy number gains encompassing the entire PRKACA gene; three patients (one sporadic case and two related cases) were observed with gains consistent with duplications, while two sporadic patients were observed with gains consistent with triplications. Although all five patients presented with ACTH-independent CS, the three sporadic patients had micronodular BAH and underwent bilateral adrenalectomy in early childhood, whereas the two related patients, a mother and a son, presented with macronodular BAH as adults. In at least one patient, PRKACA triplication was associated with a more severe phenotype.

Conclusions

Constitutional chromosomal PRKACA gene amplification is a recently identified genetic defect associated with CS, a trait that may be inherited in an autosomal dominant manner or occur de novo. Genomic rearrangements can be complex and can result in different copy number states of dosage-sensitive genes, e.g., duplication and triplication. PRKACA amplification can lead to variable phenotypes clinically and pathologically, both micro- and macro-nodular BAH, the latter of which we speculate may depend on the extent of amplification.