Search Results

You are looking at 1 - 4 of 4 items for

  • Author: P M Holterhus x
Clear All Modify Search
Free access

A Richter-Unruh, E Korsch, O Hiort, P M Holterhus, A P Themmen and S A Wudy

Leydig cell hypoplasia (LCH) is a rare autosomal recessive condition that interferes with normal development of male external genitalia in 46,XY individuals and is caused by inactivating mutations of the LH receptor gene. The clinical and biochemical diagnostic parameters of LCH are not always specific and may therefore show significant overlap with other causes of insufficient testicular steroid biosynthesis. We have studied a 46,XY newborn with completely female external genitalia and palpable testes. Due to an increased basal serum ratio of androstenedione/testosterone, 17β-hydroxysteroid dehydrogenase type 3 (17β-HSD 3) deficiency was initially suspected. DNA analysis of the corresponding HSD17B3 gene, however, showed no abnormalities in the entire coding region. In contrast, direct sequencing of the LH receptor gene revealed a novel homozygous single nucleotide insertion in exon 11 (codon A589fs) producing a frame shift in the open reading frame predicting for premature termination of translation 17 amino acids downstream. From the genetic perspective, this mutation represents the first frame shift mutation in the LH receptor gene ever reported to date. From the clinical standpoint, LCH should always be considered in the differential diagnosis as steroid profiles may not be informative. Therefore, molecular genetic analysis should be warranted for androgen biosynthesis defects in all cases.

Free access

A E Kulle, F G Riepe, J Hedderich, W G Sippell, J Schmitz, L Niermeyer and P M Holterhus


Heterozygosity in 21-hydroxylase deficiency (21OHD) has been associated with hyperandrogenemic symptoms in children and adults. Moreover, the carrier status is mandatory for genetic counseling. We aimed at defining a hormonal parameter for carrier detection by mass spectrometry.


Eleven basal and ACTH-stimulated steroid hormones of heterozygous carriers of CYP21A2 mutations and control individuals were compared.


Hormones were determined in plasma samples by liquid chromatography tandem mass spectrometry (LC–MS/MS) in 58 carriers (35 males, 23 females, age range 6–78 years) and 44 random controls (25 males, 19 females, age range 8–58 years).


Heterozygotes could be identified best applying the 17-hydroxyprogesterone+21-deoxycortisol/cortisol×1000 ((17OHP+21S)/F×1000) equation 30 min after ACTH injection. An optimal cut-off value of 8.4 provided 89% sensitivity and specificity. Considering this data and a published frequency of heterozygotes of 1/50 to 1/61, the positive predictive value (PPV) of this cut-off is 12%. Of note, the negative predictive value (NPV) excluding heterozygosity in a given patient is 99.8%.


Considering only marginal biochemical effects anticipated from heterozygosity, the stimulated ((17OHP+21S)/F×1000) identifies and excludes heterozygotes remarkably well. Nevertheless, LC–MS/MS cannot replace genetic testing, since sensitivity and specificity did not reach 100%. However, due to the considerably high NPV of the optimal cut-off and to a specificity of even 100% applying a cut-off higher than 14.7, hormonal assessment of heterozygosity can be of significant aid in conditions with limited access to genetic testing, as in some health care systems. The ((17OHP+21S)/F×1000) equation can guide diagnostic considerations in the differential diagnosis of hyperandrogenism.

Open access

A Kulle, N Krone, P M Holterhus, G Schuler, R F Greaves, A Juul, Y B de Rijke, M F Hartmann, A Saba, O Hiort, S A Wudy and on behalf of the EU COST Action

Disorders or differences in sex development (DSD) comprise a heterogeneous group of conditions with an atypical sex development. For optimal diagnosis, highly specialised laboratory analyses are required across European countries. Working group 3 of EU COST (European Cooperation in Science and Technology) Action BM 1303 ‘DSDnet’ ‘Harmonisation of Laboratory Assessment’ has developed recommendations on laboratory assessment for DSD regarding the use of technologies and analytes to be investigated. This position paper on steroid hormone analysis in diagnosis and treatment of DSD was compiled by a group of specialists in DSD and/or hormonal analysis, either from participating European countries or international partner countries. The topics discussed comprised analytical methods (immunoassay/mass spectrometry-based methods), matrices (urine/serum/saliva) and harmonisation of laboratory tests. The following positions were agreed upon: support of the appropriate use of immunoassay- and mass spectrometry-based methods for diagnosis and monitoring of DSD. Serum/plasma and urine are established matrices for analysis. Laboratories performing analyses for DSD need to operate within a quality framework and actively engage in harmonisation processes so that results and their interpretation are the same irrespective of the laboratory they are performed in. Participation in activities of peer comparison such as sample exchange or when available subscribing to a relevant external quality assurance program should be achieved. The ultimate aim of the guidelines is the implementation of clinical standards for diagnosis and appropriate treatment of DSD to achieve the best outcome for patients, no matter where patients are investigated or managed.

Open access

L Audí, S F Ahmed, N Krone, M Cools, K McElreavey, P M Holterhus, A Greenfield, A Bashamboo, O Hiort, S A Wudy, R McGowan and the EU COST Action

The differential diagnosis of differences or disorders of sex development (DSD) belongs to the most complex fields in medicine. It requires a multidisciplinary team conducting a synoptic and complementary approach consisting of thorough clinical, hormonal and genetic workups. This position paper of EU COST (European Cooperation in Science and Technology) Action BM1303 ‘DSDnet’ was written by leading experts in the field and focuses on current best practice in genetic diagnosis in DSD patients. Ascertainment of the karyotpye defines one of the three major diagnostic DSD subclasses and is therefore the mandatory initial step. Subsequently, further analyses comprise molecular studies of monogenic DSD causes or analysis of copy number variations (CNV) or both. Panels of candidate genes provide rapid and reliable results. Whole exome and genome sequencing (WES and WGS) represent valuable methodological developments that are currently in the transition from basic science to clinical routine service in the field of DSD. However, in addition to covering known DSD candidate genes, WES and WGS help to identify novel genetic causes for DSD. Diagnostic interpretation must be performed with utmost caution and needs careful scientific validation in each DSD case.