Search Results

You are looking at 1 - 2 of 2 items for

  • Author: P Lindstrom x
Clear All Modify Search
Restricted access

E. Vara, L.-Å. Idahl, P. Lindström, J. Sehlin and J. Tamarit-Rodriguez


In the neonatal period of the rat, pancreatic thyrotropin-releasing hormone content decreases and the sensitivity of insulin secretion to glucose increases. In adult rat islets, TRH inhibits glucose-induced insulin release. The aim of this study was to investigate whether a high TRH content and release can be part of the explanation for the functional immaturity of neonatal islets. For that purpose, we have measured the tissue content and the secretion of immunoreactive insulin, glucagon, somatostatin and TRH in islets from 21.5-day-old rat fetuses cultured for up to one week. Insulin, glucagon and somatostatin content increased during one week of culture in the presence of 11.1 mmol/l glucose. The TRH content decreased during culture, but did not equal adult values. Insulin, glucagon and somatostatin responses to glucose were present after one week of culture. Glucose had no effect on TRH release in cultured fetal islets, but inhibited TRH release in adult islets. We conclude that glucose can stimulate insulin secretion without inhibiting TRH release, but that a decrease in islet TRH content and a sensitization of TRH secretion to glucose may be important in the full maturation of fetal pancreatic islets.

Free access

J Gromada, K Bokvist, M Hoy, HL Olsen, P Lindstrom, BS Hansen, CF Gotfredsen, P Rorsman and MK Thomsen

OBJECTIVE: GH causes insulin resistance, impairs glycemic control and increases the risk of vascular diabetic complications. Sulphonylureas stimulate GH secretion and this study was undertaken to investigate the possible stimulatory effect of repaglinide and nateglinide, two novel oral glucose regulators, on critical steps of the stimulus-secretion coupling in single rat somatotrophs. METHODS: Patch-clamp techniques were used to record whole-cell ATP-sensitive K(+) (K(ATP)) and delayed outward K(+) currents, membrane potential and Ca(2+)-dependent exocytosis. GH release was measured from perifused rat somatotrophs. RESULTS: Both nateglinide and repaglinide dose-dependently suppressed K(ATP) channel activity with half-maximal inhibition being observed at 413 nM and 13 nM respectively. Both compounds induced action potential firing in the somatotrophs irrespective of whether GH-releasing hormone was present or not. The stimulation of electrical activity by nateglinide, but not repaglinide, was associated with an increased mean duration of the action potentials. The latter effect correlated with a reduction of the delayed outward K(+) current, which accounts for action potential repolarization. The latter effect had a K(d) of 19 microM but was limited to 38% inhibition. When applied at concentrations similar to those required to block K(ATP) channels, nateglinide in addition potentiated Ca(2+)-evoked exocytosis 3.3-fold (K(d)=3 microM) and stimulated GH release 4.5-fold. The latter effect was not shared by repaglinide. The stimulation of exocytosis by nateglinide was mimicked by cAMP and antagonized by the protein kinase A inhibitor Rp-cAMPS. CONCLUSION: Nateglinide stimulates GH release by inhibition of plasma membrane K(+) channels, elevation of cytoplasmic cAMP levels and stimulation of Ca(2+)-dependent exocytosis. By contrast, the effect of repaglinide was confined to inhibition of the K(ATP) channels.