Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Nima Sharifi x
  • Refine by Access: All content x
Clear All Modify Search
Restricted access

Jeffrey M McManus, Navin Sabharwal, Peter Bazeley, and Nima Sharifi

Context

A sex discordance in COVID exists, with males disproportionately affected. Although sex steroids may play a role in this discordance, no definitive genetic data exist to support androgen-mediated immune suppression neither for viral susceptibility nor for adrenally produced androgens.

Objective

The common adrenal-permissive missense-encoding variant HSD3B1(1245C) that enables androgen synthesis from adrenal precursors and that has been linked to suppression of inflammation in severe asthma was investigated in COVID susceptibility and outcomes reported in the UK Biobank.

Methods

The UK Biobank is a long-term study with detailed medical information and health outcomes for over 500 000 genotyped individuals. We obtained COVID test results, inpatient hospital records, and death records and tested for associations between COVID susceptibility or outcomes and HSD3B1(1245A/C) genotype. Primary analyses were performed on the UK Biobank Caucasian cohort. The outcomes were identification as a COVID case among all subjects, COVID positivity among COVID-tested subjects, and mortality among subjects identified as COVID cases.

Results

Adrenal-permissive HSD3B1(1245C) genotype was associated with identification as a COVID case (odds ratio (OR): 1.11 per C allele, 95% CI: 1.04–1.18, P  = 0.0013) and COVID-test positivity (OR: 1.09, 95% CI: 1.02–1.17, P  = 0.011) in older (≥70 years of age) women. In women identified as COVID cases, there was a positive linear relationship between age and 1245C allele frequency (P  < 0.0001). No associations were found between genotype and mortality or between genotype and circulating sex hormone levels.

Conclusion

Our study suggests that a common androgen synthesis variant regulates immune susceptibility to COVID infection in women, with increasingly strong effects as women age.

Free access

Connor Wright, Patrick O’Day, Mohammed Alyamani, Nima Sharifi, and Richard J Auchus

Context

The human adrenal is the dominant source of androgens in castration-resistant prostate cancer (CRPC) and classic 21-hydroxylase deficiency (21OHD). Abiraterone, derived from the prodrug abiraterone acetate (AA), inhibits the activity of cytochrome P450 17-hydroxylase/17,20-lyase (CYP17A1), the enzyme required for all androgen biosynthesis. AA treatment effectively lowers testosterone and androstenedione in 21OHD and CRPC patients. The 11-oxygenated androgens are major adrenal-derived androgens, yet little is known regarding the effects of AA administration on 11-oxygenated androgens.

Objective

To test the hypothesis that AA therapy decreases 11-oxygenated androgens.

Design

Samples were obtained from 21OHD or CRPC participants in AA or AA plus prednisone (AAP)-treatment studies, respectively.

Methods

We employed liquid chromatography-tandem mass spectrometry (LC-MS/MS) to measure the 11-oxygenated androgens, 11β-hydroxyandrostenedione, 11-ketoandrostenedione, 11β-hydroxytestosterone, and 11-ketotestosterone, in plasma or serum samples from six 21OHD and six CRPC patients before and after treatment with AA or AAP, respectively.

Results

In CRPC patients, administration of AAP (1000 mg/day AA with prednisone and medical castration) lowered all four 11-oxygenated androgens to below the lower limits of quantitation (<0.1–0.3 nmol/L), equivalent to 64–94% reductions from baseline. In 21OHD patients, administration of AA (100–250 mg/day for 6 days) reduced all 11-oxygenated androgens by on average 56–77% from baseline.

Conclusions

We conclude that AA and AAP therapies markedly reduce the production of the adrenal-derived 11-oxygenated androgens, both in patients with high (21OHD) or normal (CRPC) 11-oxygenated androgens at baseline, respectively. Reduction of 11-oxygenated androgens is an important aspect of AA and AAP pharmacology.