Evidence has been accumulating that, in men, some of the biological actions traditionally attributed to testosterone acting via the androgen receptor may in fact be dependent on its aromatization to estradiol (E2). In men, E2 circulates at concentrations exceeding those of postmenopausal women, and estrogen receptors are expressed in many male reproductive and somatic tissues. Human studies contributing evidence for the role of E2 in men comprise rare case reports of men lacking aromatase or a functional estrogen receptor alpha, short-term experiments manipulating sex steroid milieu in healthy men, men with organic hypogonadism or men with prostate cancer treated with androgen deprivation therapy (ADT) and from observational studies in community-dwelling men. The collective evidence suggests that, in men, E2 is an important hormone for hypothalamic–pituitary–testicular axis regulation, reproductive function, growth hormone insulin-like growth factor-1 axis regulation, bone growth and maintenance of skeletal health, body composition and glucose metabolism and vasomotor stability. In other tissues, particularly brain, elucidation of the clinical relevance of E2 actions requires further research. From a clinical perspective, the current evidence supports the use of testosterone as the treatment of choice in male hypogonadism, rather than aromatase inhibitors (which raise testosterone and lower E2), selective androgen receptor modulators and selective estrogen receptor modulators (with insufficiently understood tissue-specific estrogenic effects). Finally, E2 treatment, either as add-back to conventional ADT or as sole mode of ADT could be a useful strategy for men with prostate cancer.
Search Results
You are looking at 1 - 5 of 5 items for
- Author: Nicholas Russell x
- Refine by Access: All content x
Nicholas Russell, Rudolf Hoermann, Ada S Cheung, Jeffrey D Zajac, and Mathis Grossmann
Objective
Most men undergoing androgen deprivation therapy (ADT) for prostate cancer experience hot flushes. Current treatments have low or limited evidence of efficacy. It is likely that oestradiol depletion is the mediator of these hot flushes, and transdermal oestradiol might be an effective treatment.
Design
This is a 6-month randomised, placebo-controlled trial with the hypothesis that oestradiol would reduce hot flush frequency and intensity and improve quality of life (QoL).
Methods
Seventy-eight participants receiving ADT were randomised to 0.9 mg of 0.1% oestradiol gel per day or matched placebo. Hot flush frequency and severity were assessed by 7-day diary at baseline, month 1, month 3, and month 6. QoL was assessed by validated questionnaire.
Results
Oestradiol reduced daily hot flush frequency, with a mean adjusted difference (MAD) of –1.6 hot flushes per day (95% CI: –2.7 to –0.5; P = 0.04). The effect on weekly hot flush score was non-significant, with a MAD –19.6 (95% CI: –35.5 to –3.8; P = 0.11). On per protocol analysis, E2 significantly reduced daily hot flush frequency, with a MAD of –2.2 hot flushes per day (95% CI: –3.2 to –1.1; P = 0.001), and weekly hot flush score, with a MAD of –27.0 (–44.7 to –9.3; P = 0.02). Oestradiol had no significant effect on QoL.
Conclusion
We confirmed our hypothesis of a clinical effect of assignment to oestradiol to reduce hot flush frequency in men with castrate testosterone due to ADT. Transdermal oestradiol could be considered for men with burdensome hot flushes in whom other treatments have failed as long as the risk of breast effects and fat gain are considered.
Nicholas Russell, Rudolf Hoermann, Ada S Cheung, Jeffrey D Zajac, David J Handelsman, and Mathis Grossmann
Objective
Indirect evidence suggests that the effects of testosterone on fat mass in men are dependent on aromatization to estradiol (E2). However, no controlled study has assessed the effects of E2 in the absence of testosterone.
Design
Six-month randomized, placebo-controlled trial with the hypothesis that men randomized to E2 would reduce their fat mass.
Methods
Seventy-eight participants receiving androgen deprivation therapy for prostate cancer were randomized to 0.9 mg of 0.1% E2 gel per day, or matched placebo. Dual x-ray absorptiometry body composition was measured at baseline, month 3, and month 6. The primary outcome was total fat mass.
Results
Serum E2 increased in the estradiol group over 6 months compared to placebo, and mean-adjusted difference (MAD) was 207 pmol/L (95% CI: 123–292), P < 0.001. E2 treatment changed total fat mass, MAD 1007 g (95% CI: 124–1891), but not significantly, so P = 0.09. There were other consistent non-significant trends toward increased proportional fat mass, MAD 0.8% (95% CI: 0.0–1.6), P= 0.15; gynoid fat, MAD 147 g (95% CI: 2–293), P = 0.08; visceral fat, 53 g (95% CI: 1–105) P = 0.13; and subcutaneous fat, MAD 65 g (95% CI: 5–125), P = 0.11. Android fat increased, MAD 164 g (95% CI: 41–286), P = 0.04.
Conclusion
Contrary to our hypothesis, we provide suggestive evidence that E2 acting in the absence of testosterone, may increase total and regional fat mass in men. Given the premature closure of clinical trials due to the COVID pandemic, this potentially important observation should encourage additional studies to confirm or refute whether E2 promotes fat expansion in the absence of testosterone.
Nicholas Russell, Rudolf Hoermann, Ada S Cheung, Michael Ching, Jeffrey D Zajac, David J Handelsman, and Mathis Grossmann
Objective
There is increasing recognition that, in men, some biological actions attributed to testosterone (TS) are mediated by estradiol (E2). This study used two low doses of daily transdermal E2 gel to assess the effects on circulating E2 concentrations in men with prostate cancer with suppressed endogenous E2 production arising from androgen deprivation therapy (ADT). Secondarily, we aimed to assess short-term biological effects of E2 add-back without increasing circulating TS.
Design
28-day randomised, placebo-controlled trial.
Methods
37 participants were randomised to either 0.9 or 1.8 mg of 0.1% E2 gel per day or matched placebo gel. Fasting morning serum hormones, quality of life questionnaires, and treatment side effects were evaluated at baseline, days 14 and 28. Hot flush diaries and other biochemical measurements were completed at baseline and study end.
Results
Transdermal E2 significantly raised serum E2 from baseline to day 28 compared to placebo in the 0.9 mg dose group (median: 208 pmol/L; interquartile range: 157–332) and in the 1.8 mg dose group (median: 220 pmol/L; interquartile range: 144–660). E2 treatment reduced hot flush frequency and severity as well as beta carboxyl-terminal type 1 collagen telopeptide.
Conclusion
In men with castrate levels of E2 and TS, daily transdermal E2: 0.9–1.8 mg increased median serum E2 concentrations into the reference range reported for healthy men, but with substantial variability. E2 treatment reduced hot flushes and bone resorption. Larger studies will be required to test whether low-dose E2 treatment can mitigate ADT-associated adverse effects without E2-related toxicity.
Nicholas Russell, Ali Ghasem-Zadeh, Rudolf Hoermann, Ada S Cheung, Jeffrey D Zajac, Cat Shore-Lorenti, Peter R Ebeling, David J Handelsman, and Mathis Grossmann
Objective
In men, many effects of testosterone (T) on the skeleton are thought to be mediated by estradiol (E2), but trial evidence is largely lacking. This study aimed to determine the effects of E2 on bone health in men in the absence of endogenous T.
Design
This study is a 6-month randomized, placebo-controlled trial with the hypothesis that E2 would slow the decline of volumetric bone mineral density (vBMD) and bone microstructure, maintain areal bone mineral density (aBMD), and reduce bone remodelling.
Methods
78 participants receiving androgen deprivation therapy for prostate cancer were randomized to 0.9 mg of 0.1% E2 gel daily or matched placebo. The outcome measures were vBMD and microarchitecture at the distal tibia and distal radius by high-resolution peripheral quantitative CT, aBMD at the spine and hip by dual-energy x-ray absorptiometry, and serum bone remodelling markers.
Results
For the primary endpoint, total vBMD at the distal tibia, there was no significant difference between groups, mean adjusted difference (MAD) 2.0 mgHA/cm3 (95% CI: −0.8 to 4.8), P = 0.17. Cortical vBMD at the distal radius increased in the E2 group relative to placebo, MAD 14.8 mgHA/cm3 (95% CI: 4.5 to 25.0), P = 0.005. Relative to placebo, E2 increased estimated failure load at tibia, MAD 250 N (95% CI: 36 to 465), P = 0.02, and radius, MAD 193 N (95% CI: 65 to 320), P = 0.003. Relative to placebo, E2 increased aBMD at the lumbar spine, MAD 0.02 g/cm2 (95% CI: 0.01 to 0.03), P = 0.01, and ultra-distal radius, MAD 0.01 g/cm2 (95% CI: 0.00 to 0.02), P = 0.01, and reduced serum bone remodelling markers.
Conclusion
Relative to placebo, E2 treatment increases some measures of bone density and bone strength in men and reduces bone remodelling, effects that occur in the absence of endogenous T.