Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Marthe Moldes x
Clear All Modify Search
Free access

Marthe Moldes, Geneviève Beauregard, May Faraj, Noël Peretti, Pierre-Henri Ducluzeau, Martine Laville, Rémi Rabasa-Lhoret, Hubert Vidal and Karine Clément

Objective: Adiponutrin is a new transmembrane protein specifically expressed in adipose tissue. In obese subjects, short- or long-term calorie restriction diets were associated with a reduction in adiponutrin gene expression. Adiponut.rin mRNA level was previously shown to be negatively correlated with fasting glucose plasma levels and associated with insulin sensitivity of non-diabetic obese and non-obese subjects. The purpose of the present work was to get more insight into the regulation of adiponutrin gene expression by insulin and/or glucose using clamp studies and to examine its potential dysregulation in subjects with a deterioration of glucose homeostasis.

Methods: Adiponutrin gene expression was quantified by reverse transcriptase-quantitative PCR in s.c. adipose tissue of healthy lean subjects after an euglycemic hyperinsulinemic clamp (EGHI), a hyperglycemic euinsulinemic clamp, and a hyperglycemic hyperinsulinemic (HGHI) clamp. Adiponutrin gene expression was also analyzed in patients with different levels of insulin resistance.

Results: During EGHI, insulin infusion induced adiponutrin gene expression 8.4-fold (P = 0.008). Its expression was also induced by glucose infusion, although to a lesser extend (2.2-fold, P = 0.03). Infusion of both insulin and glucose (HGHI) had an additive effect on the adiponutrin expression (tenfold, P = 0.008). In a pathological context, adiponutrin gene was highly expressed in the adipose tissue of type-1 diabetic patients with chronic hyperglycemia compared with healthy subjects. Conversely, adiponutrin gene expression was significantly reduced in type-2 diabetics (P = 0.01), but remained moderately regulated in these patients after the EGHI clamp (2.5-fold increased).

Conclusion: These results suggest a strong relationship between adiponutrin expression, insulin sensitivity, and glucose metabolism in human adipose tissue.

Restricted access

Benjamin Bouillet, Thomas Gautier, Damien Denimal, Maxime Samson, David Masson, Jean Paul Pais de Barros, Guillaume Maquart, Marion Xolin, Alexandra Grosfeld, Héloïse Dalle, Bruno Vergès, Marthe Moldes and Bruno Fève

Objective:

Glucocorticoids (GC) are associated with increased cardiovascular morbidity despite increased HDL-C concentration. HDL-mediated cholesterol efflux, a major anti-atherogenic property of HDL particles, is negatively associated with CVD risk. We aimed to determine whether HDL-mediated cholesterol efflux was influenced by GC.

Design:

Prospective, observational study.

Methods:

Lipid parameters, HDL composition, HDL-mediated cholesterol efflux, cholesteryl ester transfer protein, phospholipid transfer protein and lecithin cholesterol acyl-transferase (LCAT) activities were determined in ten patients with giant cell arteritis before and 3 months after GC introduction and in seven control subjects. HDL concentration and composition, HDL-mediated cholesterol efflux and LCAT activity were determined in GC-treated mice.

Results:

In patients, HDL-C concentration was higher after than before treatment GC-treatment (P = 0.002), while HDL-mediated cholesterol efflux was decreased (P = 0.008) and negatively associated with the proportion of cholesteryl ester in HDL (P = 0.04), independently of CRP. As well, in mice, HDL-C level was increased after GC exposure (P = 0.04) and HDL-mediated cholesterol efflux decreased (P = 0.04). GC-treated patients had higher cholesteryl ester content in HDL, higher HDL2-to-HDL3 ratio and higher LCAT activity than before treatment (P = 0.008, P = 0.02 and P = 0.004, respectively).

Conclusions:

We report, for the first time, that in patients with giant cell arteritis and mice treated with GC, HDL-mediated cholesterol efflux was impaired by GC besides an increased HDL-C level. This impaired HDL functionality, possibly related to HDL enrichment in cholesteryl ester, could contribute to the increased CVD risk observed in GC-treated patients. Further studies are needed in larger populations, to further decipher the effect of GC on HDL.