Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Maria J Pereira x
  • All content x
Clear All Modify Search
Free access

Cristhianna Viesti Advincula Collares, Jose Antunes-Rodrigues, Ayrton Custodio Moreira, Suzana Nesi Franca, Luiz Alberto Pereira, Maria Marta Sarquis Soares, Jorge Elias Junior, Adrian J Clark, Margaret de Castro, and Lucila Leico Kagohara Elias

Objective

ACTH resistance syndromes are rare, autosomal, and genetically heterogeneous diseases that include familial glucocorticoid deficiency (FGD) and triple A syndrome. FGD has been shown to segregate with mutations in the gene coding for ACTH receptor (MC2R) or melanocortin 2 receptor accessory protein (MRAP), whereas mutations in the triple A syndrome (AAAS, Allgrove syndrome) gene have been found in segregation with triple A syndrome. We describe the clinical findings and molecular analysis of MC2R, MRAP, and AAAS genes in five Brazilian patients with ACTH resistance syndrome.

Design and methods

Genomic DNA from patients and their unaffected relatives was extracted from peripheral blood leucocytes and amplified by PCR, followed by automated sequencing. Functional analysis was carried out using Y6 cells expressing wild-type and mutant MC2R.

Results

All five patients showed low cortisol and elevated plasma ACTH levels. One patient had achalasia and alacrima, besides the symptoms of adrenal insufficiency. The molecular analysis of FGD patients revealed a novel p.Gly116Val mutation in the MC2R gene in one patient and p.Met1Ile mutation in the MRAP gene in another patient. Expression of p.Gly116Val MC2R mutant in Y6 cells revealed that this variant failed to stimulate cAMP production. The analysis of the AAAS gene in the patient with triple A syndrome showed a novel g.782_783delTG deletion. The molecular analysis of DNA from other two patients showed no mutation in MC2R, MRAP, or AAAS gene.

Conclusions

In conclusion, the molecular basis of ACTH resistance syndrome is heterogeneous, segregating with genes coding for proteins involved with ACTH receptor signaling/expression or adrenal gland development and other unknown genes.

Restricted access

Jan W Eriksson, Robin Visvanathar, Joel Kullberg, Robin Strand, Stanko Skrtic, Simon Ekström, Mark Lubberink, Martin H Lundqvist, Petros Katsogiannos, Maria J Pereira, and Håkan Ahlström

Objective

To obtain direct quantifications of glucose turnover, volumes and fat content of several tissues in the development of type 2 diabetes (T2D) using a novel integrated approach for whole-body imaging.

Design and methods

Hyperinsulinemic–euglycemic clamps and simultaneous whole-body integrated [18F]FDG-PET/MRI with automated analyses were performed in control (n = 12), prediabetes (n = 16) and T2D (n = 13) subjects matched for age, sex and BMI.

Results

Whole-body glucose uptake (Rd) was reduced by approximately 25% in T2D vs control subjects, and partitioning to brain was increased from 3.8% of total Rd in controls to 7.1% in T2D. In liver, subcutaneous AT, thigh muscle, total tissue glucose metabolic rates (MRglu) and their % of total Rd were reduced in T2D compared to control subjects. The prediabetes group had intermediate findings. Total MRglu in heart, visceral AT, gluteus and calf muscle was similar across groups. Whole-body insulin sensitivity assessed as glucose infusion rate correlated with liver MRglu but inversely with brain MRglu. Liver fat content correlated with MRglu in brain but inversely with MRglu in other tissues. Calf muscle fat was inversely associated with MRglu only in the same muscle group.

Conclusions

This integrated imaging approach provides detailed quantification of tissue-specific glucose metabolism. During T2D development, insulin-stimulated glucose disposal is impaired and increasingly shifted away from muscle, liver and fat toward the brain. Altered glucose handling in the brain and liver fat accumulation may aggravate insulin resistance in several organs.

Free access

Elena Valassi, Holger Franz, Thierry Brue, Richard A Feelders, Romana Netea-Maier, Stylianos Tsagarakis, Susan M Webb, Maria Yaneva, Martin Reincke, Michael Droste, Irina Komerdus, Dominique Maiter, Darko Kastelan, Philippe Chanson, Marija Pfeifer, Christian J Strasburger, Miklós Tóth, Olivier Chabre, Michal Krsek, Carmen Fajardo, Marek Bolanowski, Alicia Santos, Peter J Trainer, John A H Wass, Antoine Tabarin, and for the ERCUSYN Study Group

Background

Surgery is the definitive treatment of Cushing’s syndrome (CS) but medications may also be used as a first-line therapy. Whether preoperative medical treatment (PMT) affects postoperative outcome remains controversial.

Objective

(1) Evaluate how frequently PMT is given to CS patients across Europe; (2) examine differences in preoperative characteristics of patients who receive PMT and those who undergo primary surgery and (3) determine if PMT influences postoperative outcome in pituitary-dependent CS (PIT-CS).

Patients and methods

1143 CS patients entered into the ERCUSYN database from 57 centers in 26 countries. Sixty-nine percent had PIT-CS, 25% adrenal-dependent CS (ADR-CS), 5% CS from an ectopic source (ECT-CS) and 1% were classified as having CS from other causes (OTH-CS).

Results

Twenty per cent of patients took PMT. ECT-CS and PIT-CS were more likely to receive PMT compared to ADR-CS (P < 0.001). Most commonly used drugs were ketoconazole (62%), metyrapone (16%) and a combination of both (12%). Median (interquartile range) duration of PMT was 109 (98) days. PIT-CS patients treated with PMT had more severe clinical features at diagnosis and poorer quality of life compared to those undergoing primary surgery (SX) (P < 0.05). Within 7 days of surgery, PIT-CS patients treated with PMT were more likely to have normal cortisol (P < 0.01) and a lower remission rate (P < 0.01). Within 6 months of surgery, no differences in morbidity or remission rates were observed between SX and PMT groups.

Conclusions

PMT may confound the interpretation of immediate postoperative outcome. Follow-up is recommended to definitely evaluate surgical results.