This review summarises the correlations between testosterone levels and male physical appearance and behaviour. Methodological shortcomings concerning the measurement of testosterone could limit the value of these findings. In addition, testosterone measured in body fluids represents only one step in the cascade of action from production to biological effect, and could therefore provide only a limited view of the complexity of physiological events. Testosterone levels are influenced by conditions that are partly controlled or initiated by the hormone itself, but also by circumstances beyond hormonal or individual control. Different kinds of behaviour are not only subject to influence by environment, but also androgens can reinforce the particular kind of conduct and the behavioural impact can wield negative or positive feedback on testosterone secretion. Therefore, both generalisation and individualisation of study results will lead to doubtful conclusions and prejudices. Results of such studies must be viewed with caution, and over-simplification as well as over-interpretation should be avoided.
Search Results
You are looking at 1 - 2 of 2 items for
- Author: M Zitzmann x
- Refine by Access: All content x
Farid Saad, Antonio Aversa, Andrea M Isidori, Livia Zafalon, Michael Zitzmann, and Louis Gooren
Objective
Testosterone has a spectrum of effects on the male organism. This review attempts to determine, from published studies, the time-course of the effects induced by testosterone replacement therapy from their first manifestation until maximum effects are attained.
Design
Literature data on testosterone replacement.
Results
Effects on sexual interest appear after 3 weeks plateauing at 6 weeks, with no further increments expected beyond. Changes in erections/ejaculations may require up to 6 months. Effects on quality of life manifest within 3–4 weeks, but maximum benefits take longer. Effects on depressive mood become detectable after 3–6 weeks with a maximum after 18–30 weeks. Effects on erythropoiesis are evident at 3 months, peaking at 9–12 months. Prostate-specific antigen and volume rise, marginally, plateauing at 12 months; further increase should be related to aging rather than therapy. Effects on lipids appear after 4 weeks, maximal after 6–12 months. Insulin sensitivity may improve within few days, but effects on glycemic control become evident only after 3–12 months. Changes in fat mass, lean body mass, and muscle strength occur within 12–16 weeks, stabilize at 6–12 months, but can marginally continue over years. Effects on inflammation occur within 3–12 weeks. Effects on bone are detectable already after 6 months while continuing at least for 3 years.
Conclusion
The time-course of the spectrum of effects of testosterone shows considerable variation, probably related to pharmacodynamics of the testosterone preparation. Genomic and non-genomic effects, androgen receptor polymorphism and intracellular steroid metabolism further contribute to such diversity.