Search Results

You are looking at 1 - 2 of 2 items for

  • Author: M Procopio x
Clear All Modify Search
Restricted access

E. Ghigo, S. Goffi, E. Arvat, M. Nicolosi, M. Procopio, J. Bellone, E. Imperiale, E. Mazza, G. Baracchi and F. Camanni

Abstract.

In 11 elderly normal subjects and in 17 young healthy subjects we studied the response of plasma growth hormone to GH-releasing hormone (GHRH(29), 1 μg/kg iv) alone and preceded by pyridostigmine ( 120 mg orally 60 min before GHRH), a cholinesterase inhibitor likely able to suppress somatostatin release. The GH response to pyridostigmine alone was also examined. Basal plasma GH levels were similar in elderly and young subjects. In the elderly, GHRH induced a GH rise (AUC, median and range: 207.5, 43.5-444.0 μg · 1−1 · h−1) which was lower (p = 0.006) than that observed in young subjects (548.0, 112.5-2313.5 μg · 1−1 · h−1). The pyridostigmine-induced GH rise in the elderly was similar to that in young subjects (300.5, 163.0-470.0 vs 265.0, 33.0-514.5 μg · 1−1 · h−1). Pyridostigmine potentiated the GH responsiveness to GHRH in both elderly (437.5, 152.0-1815.5 μg · 1−1 · h−1; p = 0.01 vs GHRH alone) and young subjects (2140.0, 681.5-4429.5 μg · 1−1 · h−1; p = 0.0001 vs GHRH alone). However, the GH response to pyridostigmine + GHRH was significantly lower (p = 0.0001) in elderly than in young subjects. In conclusion, the cholinergic enhancement by pyridostigmine is able to potentiate the blunted GH response to GHRH in elderly subjects, inducing a GH increase similar to that observed after GHRH alone in young adults. This finding suggests that an alteration of somatostatinergic tone could be involved in the reduced GH secretion in normal aging. However, a decreased GH response to combined administration of pyridostigmine and GHRH in elderly subjects suggests that other abnormalities may coexist, leading to the secretory hypoactivity of somatotropes.

Free access

M Maccario, F Tassone, C Gauna, SE Oleandri, G Aimaretti, M Procopio, S Grottoli, CD Pflaum, CJ Strasburger and E Ghigo

OBJECTIVE: To verify the hypothesis of an increased sensitivity to GH in obesity (OB) and Cushing's syndrome (CS). DESIGN: We studied the effects of short-term administration of low-dose rhGH on circulating IGF-I levels in patients with simple OB or CS and in normal subjects (NS). METHODS: Nineteen women with abdominal OB aged (mean +/- s.e.m.) 38.2+/-3.1 years, body mass index 40.7+/-2.5 kg/m(2), waist to hip ratio 0.86+/-0.02, ten with CS (50.4+/-4.2 years, 29.7 +/- 3.3 kg/m(2)) and 11 NS (35.0+/-3.6 years, 20.5+/-0.5 kg/m(2)) underwent s.c. administration of 5 microg/kg per day rhGH at 2200 h for four days. Serum IGF-I, IGF-binding protein-3 (IGFBP-3), GH-binding protein (GHBP), insulin and glucose levels were determined at baseline and 12 h after the first and the last rhGH administration. RESULTS: Basal IGF-I levels in NS (239.3+/-22.9 microg/l) were similar to those in OB (181.5+/-13.7 microg/l) and CS (229.0+/-29.1 microg/l). Basal IGFBP-3, GHBP and glucose levels in NS, OB and CS were similar while insulin levels in NS were lower (P<0.01) than those in OB and CS. In NS, the low rhGH dose induced a sustained rise of IGF-I levels (279.0+/-19.5 microg/l, P<0.001), a non-significant IGFBP-3 increase and no change in GHBP, insulin and glucose levels. In OB and CS, the IGF-I response to rhGH showed progressive increase (246.2+/-17.2 and 311.0+/-30.4 microg/l respectively, P<0.01 vs baseline). Adjusting by ANCOVA for basal values, rhGH-induced IGF-I levels in CS (299.4 microg/l) were higher than in OB (279.1 microg/l, P<0.01), which, in turn, were higher (P<0.05) than in NS (257.7 microg/l). In OB, but not in CS, IGFBP-3 and insulin levels showed slight but significant (P<0.05) increases during rhGH treatment, which did not modify glucose levels in any group; thus, in the OB patient group a significant fall in glucose/insulin ratio was observed. CONCLUSIONS: Short-term treatment with low-dose rhGH has enhanced stimulatory effect on IGF-I levels in OB and, particularly, in hypercortisolemic patients. These findings support the hypothesis that hyperinsulinism and hypercortisolism enhance the sensitivity to GH in humans.