Search Results

You are looking at 1 - 2 of 2 items for

  • Author: M Kanzawa x
Clear All Modify Search
Free access

M Kanzawa, T Sugimoto, M Kanatani and K Chihara

OBJECTIVE: Recently, osteoprotegerin (OPG)/osteoclastogenesis inhibitory factor (OCIF) has been shown to inhibit osteoclast differentiation. On the other hand, we have reported that parathyroid hormone (PTH) stimulated osteoclast formation, presumably through a PTH-responsive cAMP-dependent protein kinase (PKA) pathway, in mouse bone cells. DESIGN AND METHODS: The present study was performed to examine how OPG/OCIF expression is regulated by PTH and to further investigate the possible involvement of OPG/OCIF in the stimulation of osteoclast formation by PTH in mouse bone cells. OPG/OCIF mRNA expression was analyzed by Northern hybridization after 24h treatments of mouse whole bone cells and mouse stromal cell line, ST2 cells with PTH or various second messenger analogs. RESULTS: Human (h) PTH(1-34) (10(-10) and 10(-8)mol/l) but not 10(-8)mol/l hPTH(3-34) down-regulated OPG/OCIF mRNA expression in mouse bone cells. Dibutyryl cAMP, but not phorbol ester, an activator of protein kinase C, or A23187, a calcium ionophore, down-regulated it. The same was also observed in ST2 cells, suggesting that stromal cells are responsible for the inhibitory effect of PTH and cAMP analogs on OPG/OCIF mRNA expression in mouse bone cells. CONCLUSIONS: The present study indicates that PTH down-regulates OPG/OCIF mRNA expression through the PKA pathway in stromal cells, which would result in the stimulation of osteoclast formation.

Free access

T Sugimoto, D Nakaoka, M Nasu, M Kanzawa, T Sugishita and K Chihara

The present study was performed to investigate the age-dependent changes in body composition and the possible role of growth hormone (GH), insulin-like growth factor (IGF)-I and IGF-binding protein-3 (IGFBP-3) in these changes in postmenopausal Japanese women. A total of 161 Japanese women aged 45-88 years (mean 62) were enrolled in the cross-sectional study. Body composition (bone mineral content (BMC), lean body mass (LBM) and fat) was measured by dual-energy X-ray absorptiometry, and the percentage of BMC, LBM and fat was calculated by dividing each absolute value of body composition by total body mass. Urinary GH concentration divided by creatinine in nocturnal urine samples collected just after waking was used as an index of endogenous GH secretion. Serum levels of IGF-I and IGFBP-3 were measured by RIA. Urinary GH levels as well as serum levels of IGF-I and IGFBP-3 declined with age. BMC, %BMC and LBM also declined with age, while fat mass and %fat did not obviously change with age. Urinary GH levels as well as serum levels of IGF-I and IGFBP-3 correlated positively with BMC, even if age was taken into account. On the other hand, urinary GH correlated negatively with fat and %fat. In contrast, serum levels of IGF-I and IGFBP-3 correlated positively with fat and %fat. LBM did not correlate with either urinary GH or serum IGFBP-3 levels but exhibited a weakly positive correlation with serum IGF-I level. The present study suggests that the GH-IGF-I-IGFBP-3 axis positively regulates bone mass, and that GH and IGF-I-IGFBP-3 inversely regulate fat mass, i.e. GH negatively and IGF-I-IGFBP-3 positively regulates it.