Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Louise G Grunnet x
Clear All Modify Search
Free access

Nihal Thomas, Louise G Grunnet, Pernille Poulsen, Solomon Christopher, Rachaproleu Spurgeon, Mercy Inbakumari, Roshan Livingstone, Reginald Alex, Venkataraghava R Mohan, Belavendra Antonisamy, Finney S Geethanjali, Rajni Karol, Allan Vaag and Ib C Bygbjerg


Low birth weight (LBW) is common in the Indian population and may represent an important predisposing factor for type 2 diabetes (T2D) and the metabolic syndrome. Intensive metabolic examinations in ethnic LBW Asian Indians have been almost exclusively performed in immigrants living outside India. Therefore, we aimed to study the metabolic impact of being born with LBW in a rural non-migrant Indian population.

Subjects and methods

One hundred and seventeen non-migrant, young healthy men were recruited from a birth cohort in a rural part of south India. The subjects comprised 61 LBW and 56 normal birth weight (NBW) men, with NBW men acting as controls. Subjects underwent a hyperinsulinaemic euglycaemic clamp, i.v. and oral glucose tolerance tests and a dual-energy X-ray absorptiometry scan. The parents' anthropometric status and metabolic parameters were assessed.


Men with LBW were shorter (167±6.4 vs 172±6.0 cm, P<0.0001), lighter (51.9±9 vs 55.4±7 kg, P=0.02) and had a reduced lean body mass (42.1±5.4 vs 45.0±4.5 kg, P=0.002) compared with NBW controls. After adjustment for height and weight, the LBW subjects had increased diastolic blood pressure (77±6 vs 75±6 mmHg, P=0.01). Five LBW subjects had impaired glucose tolerance. In vivo insulin secretion and peripheral insulin action were similar in both the groups. Mothers of the LBW subjects were 3 cm shorter than the control mothers.


Only subtle features of the metabolic syndrome and changes in body composition among LBW rural Indians were found. Whether other factors such as urbanisation and ageing may unmask more severe metabolic abnormalities may require a long-term follow-up.

Restricted access

Freja B Kampmann, Anne Cathrine B Thuesen, Line Hjort, Anne A Bjerregaard, Jorge E Chavarro, Jan Frystyk, Mette Bjerre, Inge Tetens, Sjurdur F Olsen, Allan A Vaag, Peter Damm and Louise G Grunnet


Fetal exposure to gestational diabetes mellitus (GDM) increases the risk of metabolic diseases in the offspring. Leptin, adiponectin, and fibroblast growth factor 21 (FGF21) may play potential roles in the underlying disease mechanisms. We investigated the impact of fetal exposure to GDM on leptin, adiponectin, and FGF21 concentrations and their associations with measures of adiposity and metabolic traits during childhood/adolescence.

Design and methods

The follow-up study included 504 GDM and 540 control offspring aged 9–16 from the Danish National Birth Cohort. Anthropometric measurements, fasting blood samples, puberty status and fat percentages by dual-energy X-ray absorptiometry were examined. Serum concentrations of leptin, adiponectin, and FGF21 were measured by validated immune assays.


GDM offspring had 38% (95% CI: 22–55%) higher leptin, 0.6 mg/L (95% CI: −1.2, −0.04 mg/L) lower adiponectin, and 32% (95% CI: −47%, −12%) lower FGF21 concentrations than control offspring (P < 0.05). After adjustment for confounders including maternal pre-pregnancy BMI, GDM offspring had borderline higher leptin (P = 0.06) and significantly lower FGF21 concentrations (P = 0.006). When accounting for offspring BMI z-score, GDM exposure had no significant independent effect on leptin or adiponectin concentrations, whereas FGF21 was still significant. In univariate analyses, leptin and adiponectin were associated with fasting insulin, HOMA-IR, and adiposity, and FGF21 with total fat percentage.


GDM offspring had higher leptin, lower adiponectin and FGF21 concentrations than control offspring. Elevated leptin and decreased adiponectin concentrations associated with adverse metabolic traits and were most likely driven by higher obesity prevalence among GDM offspring. The functional implications of decreased FGF21 concentrations among GDM offspring need to be further explored.