Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Lorella Marselli x
  • All content x
Clear All Modify Search
Free access

Carmela Santangelo, Angela Scipioni, Lorella Marselli, Piero Marchetti, and Francesco Dotta

Objective: Suppressor of cytokine signaling (SOCS) proteins negatively regulate signal transduction of several cytokines. Since cytokines participate in the pancreatic islet damage in type 1 diabetes, the aim of our study was to investigate the expression of SOCS-1, -2 and -3 in isolated human islets, in basal conditions and after exposure, in vitro, to a combination of interferon (IFN)-γ, interleukin (IL)-1β and tumor necrosis factor (TNF)-α cytokines and in control and in type 1 diabetic human pancreata, to establish (i) whether SOCS molecules are constitutively expressed in human pancreatic islets and (ii) whether their expression can be modulated in vitro by proinflammatory cytokines or ex vivo by an islet inflammatory process.

Methods: Gene expression of SOCS-1, -2 and -3 was evaluated by RT-PCR in untreated and cytokine-treated isolated human pancreatic islets and their protein expression by immunohistochemistry in control and in type 1 diabetic human pancreata paraffin-embedded sections.

Results: We found that SOCS-1, -2 and -3 mRNA is constitutively, although weakly, expressed in human pancreatic islets, similar to the expression observed in control pancreata by immunohistochemistry. SOCS-1, -2 and -3 mRNA expression was strongly increased in human islets after exposure, in vitro, to IFN-γ, IL-1β and TNF-α. Accordingly, an intense and islet-specific immunohistochemical staining for all three SOCS was detected in pancreata from type 1 diabetic patients.

Conclusion: SOCS-1, -2 and -3 genes are constitutively expressed in human pancreatic islets; their expression increases after exposure to proinflammatory cytokines and during an autoimmune inflammatory process, raising the possibility that these molecules act as key regulators of cytokine signaling in pancreatic islets.

Restricted access

Maria Lytrivi, Valérie Senée, Paraskevi Salpea, Federica Fantuzzi, Anne Philippi, Baroj Abdulkarim, Toshiaki Sawatani, Sandra Marín-Cañas, Nathalie Pachera, Anne Degavre, Pratibha Singh, Céline Derbois, Doris Lechner, Laurence Ladrière, Mariana Igoillo-Esteve, Cristina Cosentino, Lorella Marselli, Jean-François Deleuze, Piero Marchetti, Décio L Eizirik, Marc Nicolino, Annabelle Chaussenot, Cécile Julier, and Miriam Cnop


DNAJC3, also known as P58IPK, is an Hsp40 family member that interacts with and inhibits PKR-like ER-localized eIF2α kinase (PERK). Dnajc3 deficiency in mice causes pancreatic β-cell loss and diabetes. Loss-of-function mutations in DNAJC3 cause early-onset diabetes and multisystemic neurodegeneration. The aim of our study was to investigate the genetic cause of early-onset syndromic diabetes in two unrelated patients, and elucidate the mechanisms of β-cell failure in this syndrome.


Whole exome sequencing was performed and identified variants were confirmed by Sanger sequencing. DNAJC3 was silenced by RNAi in INS-1E cells, primary rat β-cells, human islets, and induced pluripotent stem cell-derived β-cells. β-cell function and apoptosis were assessed, and potential mediators of apoptosis examined.


The two patients presented with juvenile-onset diabetes, short stature, hypothyroidism, neurodegeneration, facial dysmorphism, hypoacusis, microcephaly and skeletal bone deformities. They were heterozygous compound and homozygous for novel loss-of-function mutations in DNAJC3. DNAJC3 silencing did not impair insulin content or secretion. Instead, the knockdown induced rat and human β-cell apoptosis and further sensitized cells to endoplasmic reticulum stress, triggering mitochondrial apoptosis via the pro-apoptototic Bcl-2 proteins BIM and PUMA.


This report confirms previously described features and expands the clinical spectrum of syndromic DNAJC3 diabetes, one of the five monogenic forms of diabetes pertaining to the PERK pathway of the endoplasmic reticulum stress response. DNAJC3 deficiency may lead to β-cell loss through BIM- and PUMA-dependent activation of the mitochondrial pathway of apoptosis.