Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Lærke S Gasbjerg x
  • All content x
Clear All Modify Search
Restricted access

Signe Stensen, Lærke S Gasbjerg, Liva L. Krogh, Kirsa Skov-Jeppesen, Alexander H. Sparre-Ulrich, Mette H. Jensen, Flemming Dela, Bolette Hartmann, Tina Vilsbøll, Jens J Holst, Mette M. Rosenkilde, Mikkel B. Christensen, and Filip K Knop

Objective: The insulinotropic effect of exogenous, intravenously infused glucose-dependent insulinotropic polypeptide (GIP) is impaired in patients with type 2 diabetes. We evaluated the effects of endogenous GIP in relation to glucose and bone metabolism in patients with type 2 diabetes using a selective GIP receptor antagonist and hypothesized that the effects of endogenous GIP were preserved.

Design: A randomized, double-blinded, placebo-controlled, crossover study.

Methods: Ten patients with overweight/obesity and type 2 diabetes (mean±SD; HbA1c 52±11 mmol/mol; BMI 32.5±4.8 kg/m2) were included. We infused a selective GIP receptor antagonist, GIP(3-30)NH2 (1,200 pmol × kg-1 × min-1), or placebo (saline) during two separate, 230-minute, standardized, liquid mixed meal tests followed by an ad libitum meal. Subcutaneous adipose tissue biopsies were analyzed.

Results: Compared with placebo, GIP(3-30)NH2 reduced postprandial insulin secretion (Δbaseline-subtracted area under the curve (bsAUC)C-peptide%±SEM; -14±6%, p=0.021) and peak glucagon (Δ%±SEM; -11±6%, p=0.046), but had no effect on plasma glucose (p=0.692). Suppression of bone resorption (assessed by circulating carboxy-terminal collagen crosslinks (CTX)) was impaired during GIP(3-30)NH2 infusion compared with placebo (ΔbsAUCCTX;±SEM; -4.9±2 ng/ml × min, p=0.005) corresponding to a ~50% reduction. Compared with placebo, GIP(3-30)NH2 did not affect plasma lipids, ad libitum meal consumption or adipose tissue triglyceride content.

Conclusions: Using a selective GIP receptor antagonist during a meal, we show that endogenous GIP increases postprandial insulin secretion with little effect on postprandial glycemia but is important for postprandial bone homeostasis in patients with type 2 diabetes.

Restricted access

Niels B Dalsgaard, Lærke S Gasbjerg, Laura S Hansen, Nina L Hansen, Signe Stensen, Bolette Hartmann, Jens F Rehfeld, Jens J Holst, Tina Vilsbøll, and Filip K Knop

Aims

The alpha-glucosidase inhibitor acarbose is believed to reduce plasma glucose by delaying hydrolysis of carbohydrates. Acarbose-induced transfer of carbohydrates to the distal parts of the intestine increases circulating glucagon-like peptide 1 (GLP-1). Using the GLP-1 receptor antagonist exendin(9–39)NH2, we investigated the effect of acarbose-induced GLP-1 secretion on postprandial glucose metabolism in patients with type 2 diabetes.

Methods

In a double-blinded, placebo-controlled, randomized, crossover study, 15 participants with metformin-treated type 2 diabetes (age: 57–85 years, HbA1c: 40–74 mmol/mol) were subjected to two 14-day treatment periods with acarbose or placebo, respectively, separated by a 6-week wash-out period. At the end of each period, two randomized 4-h liquid mixed meal tests with concomitant infusion of exendin(9–39)NH2 and saline, respectively, were performed.

Results

Compared to placebo, acarbose increased postprandial GLP-1 concentrations and decreased postprandial glucose. We observed no absolute difference in the exendin(9–39)NH2-induced increase in postprandial glucose excursions between placebo and acarbose periods, but relatively, postprandial glucose was increased by 119 ± 116% (mean ± s.d.) during exendin(9–39)NH2 infusion in the acarbose period vs a 39 ± 27% increase during the placebo period (P = 0.0163).

Conclusions

We confirm that acarbose treatment stimulates postprandial GLP-1 secretion in patients with type 2 diabetes. Using exendin(9–39)NH2, we did not see an impact of acarbose-induced GLP-1 secretion on absolute measures of postprandial glucose tolerance, but relatively, the effect of exendin(9–39)NH2 was most pronounced during acarbose treatment.

Restricted access

Mia Demant, Malte Palm Suppli, Signe Foghsgaard, Lise Gether, Magnus Frederik Gluud Grøndahl, Niels Bjørn Dalsgaard, Sigrid S Bergmann, Amalie Rasmussen Lanng, Lærke S Gasbjerg, Martin Thomasen, Jonatan Ising Bagger, Charlotte Strandberg, Merete Juhl Kønig, Henning Grønbæk, Ulrik Becker, Jens J Holst, Joachim Knop, Matthew Paul Gillum, Tina Vilsbøll, and Filip K. Knop

Aims/hypothesis. Metabolic effects of intermittent unhealthy lifestyle in young adults are poorly studied. We investigated the gluco-metabolic and hepatic effects of participation in Roskilde Festival (one week of binge drinking and junk food consumption) in young, healthy males.

Methods. Fourteen festival participants (FP) were studied before, during and after one week’s participation in Roskilde Festival. Fourteen matched controls (CTRL) who did not participate in Roskilde Festival or change their lifestyle in other ways were investigated along a similar timeline.

Results. The FP group consumed more alcohol compared to their standard living conditions (2.0±3.9 vs 16.3±8.3 units/day, p<0.001). CTRLs did not change their alcohol consumption. AUC for glucose during OGTT did not change in either group. C-peptide responses increased in the FP group (320±31 vs 376±25 nmol/l×min, p=0.055) and the Matsuda index of insulin sensitivity decreased (6.2±2.4 vs 4.7±1.4, p = 0.054). AUC for glucagon during OGTT increased in the FP group (1,115±114 vs 1,599±183 pmol/l×min, p=0.003) together with fasting fibroblast growth factor 21 (FGF21) (62±30 vs 132±72 pmol/L, p<0.001), growth differentiation factor 15 (GDF5) (276±78 vs 330±83 pg/mL, p=0.009) and aspartate aminotransferase (AST) levels (37.6±6.8 vs 42.4±11 U/l, p=0.043). Four participants (29%) developed ultrasound-detectable steatosis and mean strain elastography-assessed liver stiffness increased (p=0.026) in the FP group.

Conclusions/interpretation. Participation in Roskilde Festival did not affect oral glucose tolerance, but was associated with a reduction in insulin sensitivity, increases in glucagon, FGF21, GDF15 and AST and lead to increased liver stiffness and, in 29% of the participants, ultrasound-detectable hepatic steatosis.