Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Katie L Mitchell x
  • All content x
Clear All Modify Search
Open access

Earn H Gan, Katie MacArthur, Anna L Mitchell, and Simon H S Pearce

Background

Autoimmune Addison's disease (AAD) is a rare condition with a complex genetic basis. A panel of rare and functionally defective genetic variants in the sialic acid acetylesterase (SIAE) gene has recently been implicated in several common autoimmune conditions. We performed a case–control study to determine whether these rare variants are associated with a rarer condition, AAD.

Method

We analysed nine SIAE gene variants (W48X, M89V, C196F, C226G, R230W, T312M, Y349C, F404S and R479C) in a United Kingdom cohort of 378 AAD subjects and 387 healthy controls. All samples were genotyped using Sequenom iPlex chemistry to characterise primer extension products.

Results

A heterozygous rare allele at codon 312 (312*M) was found in one AAD patient (0.13%) but was not detected in the healthy controls. The commoner, functionally recessive variant at codon 89 (89*V) was found to be homozygous in two AAD patients but was only found in the heterozygous state in controls. Taking into account all nine alleles examined, 4/378 (1.06%) AAD patients and 1/387 (0.25%) healthy controls carried the defective SIAE alleles, with a calculated odds ratio of 4.13 (95% CI 0.44–97.45, two-tailed P value 0.212, NS).

Conclusion

We demonstrated the presence of 89*V homozygotes and the 312*M rare allele in the AAD cohort, but overall, our analysis does not support a role for rare variants in SIAE in the pathogenesis of AAD. However, the relatively small collection of AAD patients limits the power to exclude a small effect.

Restricted access

Victoria S Sprung, Kelly A Bowden Davies, Juliette A Norman, Andrew Thompson, Katie L Mitchell, John P H Wilding, Graham J Kemp, and Daniel J Cuthbertson

Background

Data suggest that metabolic health status, incorporating components of metabolic syndrome (MetS), predicts cardiovascular disease (CVD) risk better than BMI. This study explored the association of MetS and obesity with endothelial function, a prognostic risk factor for incident CVD.

Methods

Forty-four participants were phenotyped according to BMI as non-obese vs obese (<30 or >30 kg/m2) and according to the International Diabetes Federation criteria of MetS: ≤2 criteria MetS (MetS−) vs ≥3 criteria MetS (MetS+); (1.)non-obese MetS− vs (2.) non-obese MetS+ and (3.) obese MetS vs (4.) obese MetS+. Flow-mediated dilation (FMD), body composition including liver fat (MRI and spectroscopy), dietary intake, intensities of habitual physical activity and cardio-respiratory fitness were determined. Variables were analysed using a one-factor between-groups ANOVA and linear regression; mean (95% CI) are presented.

Results

Individuals with MetS+ displayed lower FMD than those with MetS−. For non-obese individuals mean difference between MetS+ and MetS− was 4.1% ((1.0, 7.3); P = 0.004) and obese individuals had a mean difference between MetS+ and MetS− of 6.2% ((3.1, 9.2); P < 0.001). Although there was no association between BMI and FMD (P = 0.27), an increased number of MetS components was associated with a lower FMD (P = 0.005), and after adjustment for age and sex, 19.7% of the variance of FMD was explained by MetS, whereas only 1.1% was explained by BMI.

Conclusions

In this study cohort, components of MetS, rather than obesity per se, contribute to reduced FMD, which suggests a reduced bioavailability of nitric oxide and thus increased risk of CVD.