Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Juan J Díez x
Clear All Modify Search
Free access

Pedro Iglesias and Juan J Díez

Type 2 diabetes is a well recognised cause of chronic renal failure (CRF). Only few oral antidiabetic drugs can be used for treating type 2 diabetes in patients with CRF. Among them are repaglinide, a rapid-acting prandial insulin releaser, and peroxisome proliferator-activated receptor gamma (PPARγ) agonists, such as rosiglitazone and pioglitazone. These compounds are metabolised in the liver, therefore accumulation of the drug and the risk of severe and prolonged hypoglycaemia are minimised. PPARγ receptors are expressed in many tissues including the kidney. Recently, numerous healthful effects of PPARγ agonists on several aspects related to renal function have been increasingly reported. These drugs have shown to possess many advantageous anti-inflammatory, haemodynamic, vascular and metabolic effects. In the present paper we have reviewed the more recent experimental studies that evaluated these potential beneficial effects of PPARγ agonists on renal function and revised the results of their utilisation in patients with different degrees of renal impairment, in dialysis patients, and in patients with diabetes mellitus after kidney transplantation. Finally, tolerability and safety profile of PPARγ agonists in patients with reduced glomerular filtration rate are also analysed.

Free access

Pedro Iglesias and Juan J Díez

Tumor-induced hypoglycemia (TIH) is a rare clinical entity that may occur in patients with diverse kinds of tumor lineages and that may be caused by different mechanisms. These pathogenic mechanisms include the eutopic insulin secretion by a pancreatic islet β-cell tumor, and also the ectopic tumor insulin secretion by non-islet-cell tumor, such as bronchial carcinoids and gastrointestinal stromal tumors. Insulinoma is, by far, the most common tumor associated with clinical and biochemical hypoglycemia. Insulinomas are usually single, small, sporadic, and intrapancreatic benign tumors. Only 5–10% of insulinomas are malignant. Insulinoma may be associated with the multiple endocrine neoplasia type 1 in 4–6% of patients. Medical therapy with diazoxide or somatostatin analogs has been used to control hypoglycemic symptoms in patients with insulinoma, but only surgical excision by enucleation or partial pancreatectomy is curative. Other mechanisms that may, more uncommonly, account for tumor-associated hypoglycemia without excess insulin secretion are the tumor secretion of peptides capable of causing glucose consumption by different mechanisms. These are the cases of tumors producing IGF2 precursors, IGF1, somatostatin, and glucagon-like peptide 1. Tumor autoimmune hypoglycemia occurs due to the production of insulin by tumor cells or insulin receptor autoantibodies. Lastly, massive tumor burden with glucose consumption, massive tumor liver infiltration, and pituitary or adrenal glands destruction by tumor are other mechanisms for TIH in cases of large and aggressive neoplasias.

Free access

Pedro Iglesias, Rafael Selgas, Sara Romero and Juan J Díez

Fibroblast growth factor 21 (FGF21), a 181 amino acid circulating protein, is a member of the FGF superfamily, with relevant metabolic actions. It acts through the interaction with specific FGF receptors and a cofactor called β-Klotho, whose expression is predominantly detected in metabolically active organs. FGF21 stimulates glucose uptake in adipocytes via the induction of glucose transporter-1. This action is additive and independent of insulin. β-Cell function and survival are preserved, and glucagon secretion is reduced by this protein, thus decreasing hepatic glucose production and improving insulin sensitivity. Lipid profile has been shown to be improved by FGF21 in several animal models. FGF21 increases energy expenditure in rodents and induces weight loss in diabetic nonhuman primates. It also exerts favorable effects on hepatic steatosis and reduces tissue lipid content in rodents. Adaptive metabolic responses to fasting, including stimulation of ketogenesis and fatty acid oxidation, seem to be partially mediated by FGF21. In humans, serum FGF21 concentrations have been found elevated in insulin-resistant states, such as impaired glucose tolerance and type 2 diabetes. FGF21 levels are correlated with hepatic insulin resistance index, fasting blood glucose, HbA1c, and blood glucose after an oral glucose tolerance test. A relationship between FGF21 levels and long-term diabetic complications, such as nephropathy and carotid atheromatosis, has been reported. FGF21 levels decreased in diabetic patients after starting therapy with insulin or oral agents. Increased FGF21 serum levels have also been found to be associated with obesity. In children, it is correlated with BMI and leptin levels, whereas in adults, FGF21 levels are mainly related to several components of the metabolic syndrome. Serum FGF21 levels have been found to be elevated in patients with ischemic heart disease. In patients with renal disease, FGF21 levels exhibited a progressive increase as renal function deteriorates. Circulating FGF21 levels seem to be related to insulin resistance and inflammation in dialysis patients. In summary, FGF21 is a recently identified hormone with antihyperglycemic, antihyperlipidemic, and thermogenic properties. Direct or indirect potentiation of its effects might be a potential therapeutic target in insulin-resistant states.