Search Results

You are looking at 1 - 9 of 9 items for

  • Author: Jens J Holst x
Clear All Modify Search
Free access

David P Sonne, Jens F Rehfeld, Jens J Holst, Tina Vilsbøll and Filip K Knop

Objective

Recent preclinical work has suggested that postprandial flow of bile acids into the small intestine potentiates nutrient-induced glucagon-like peptide 1 (GLP1) secretion via bile acid-induced activation of the G protein-coupled receptor TGR5 in intestinal L cells. The notion of bile-induced GLP1 secretion combined with the findings of reduced postprandial gallbladder emptying in patients with type 2 diabetes (T2DM) led us to speculate whether reduced postprandial GLP1 responses in some patients with T2DM arise as a consequence of diabetic gallbladder dysmotility.

Design and methods

In a randomised design, 15 patients with long-standing T2DM and 15 healthy age-, gender- and BMI-matched control subjects were studied during 75-g oral glucose tolerance test (OGTT) and three isocaloric (500 kcal) and isovolaemic (350 ml) liquid meals: i) 2.5 g fat, 107 g carbohydrate and 13 g protein; ii) 10 g fat, 93 g carbohydrate and 11 g protein; and iii) 40 g fat, 32 g carbohydrate and 3 g protein. Basal and postprandial plasma concentrations of glucose, insulin, C-peptide, glucagon, GLP1, glucose-dependent insulinotropic polypeptide (GIP), cholecystokinin and gastrin were measured. Furthermore, gallbladder emptying and gastric emptying were examined.

Results

Gallbladder emptying increased with increasing meal fat content, but no intergroup differences were demonstrated. GIP and GLP1 responses were comparable among the groups with GIP levels being higher following high-fat meals, whereas GLP1 secretion was similar after both OGTT and meals.

Conclusions

In conclusion, patients with T2DM exhibited normal gallbladder emptying to meals with a wide range of fat content. Incretin responses were similar to that in controls, and an association with postprandial gallbladder contraction could not be demonstrated.

Free access

Solrun Vidarsdottir, Ferdinand Roelfsema, Trea Streefland, Jens J Holst, Jens F Rehfeld and Hanno Pijl

Background

Treatment with olanzapine (atypical antipsychotic drug) is frequently associated with various metabolic anomalies, including obesity, dyslipidemia, and diabetes mellitus. Recent data suggest that olanzapine orally disintegrating tablets (ODT), which dissolve instantaneously in the mouth, might cause less weight gain than olanzapine standard oral tablets (OST).

Design and methods

Ten healthy men received olanzapine ODT (10 mg o.d., 8 days), olanzapine OST (10 mg o.d., 8 days), or no intervention in a randomized crossover design. At breakfast and dinner, blood samples were taken for measurement of pancreatic polypeptide, peptide YY, glucagon-like peptide-1, total glucagon, total ghrelin, and cholecystokinin (CCK) concentrations.

Results

With the exception of pre- and postprandial concentration of ghrelin at dinner and preprandial CCK concentrations at breakfast, which were all slightly increased (respectively P=0.048, P=0.034 and P=0.042), olanzapine did not affect gut hormone concentrations. Thus, olanzapine ODT and OST had similar effects on gut hormone secretion.

Conclusion

Short-term treatment with olanzapine does not have major impact on the plasma concentration of gut hormones we measured in healthy men. Moreover, despite pharmacological difference, gut hormone concentrations are similar during treatment with olanzapine ODT and OST. The capacity of olanzapine to induce weight gain and diabetes is unlikely to be caused by modulation of the secretion of gut hormones measured here. We cannot exclude the possibility that olanzapine's impact on other gut hormones, to impair insulin sensitivity and stimulate weight gain, exists.

Restricted access

Allan A Vaag, Jens J Holst, Aage Vølund and Henning Beck-Nielsen

Vaag AA, Holst JJ, Volund A, Beck-Nielsen H. Gut incretin hormones in identical twins discordant for non-insulin-dependent diabetes mellitus (NIDDM)—evidence for decreased glucagon-like peptide 1 secretion during oral glucose ingestion in NIDDM twins. Eur J Endocrinol 1996;135:425–32. ISSN 0804–4643

The incremental glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP) responses (areas under curves; AUCs) were determined during a standard 180-min 75-g oral glucose tolerance test in a group of 12 identical twin pairs discordant for non-insulin-dependent diabetes mellitus (NIDDM) and 13 matched controls without family history of diabetes using highly sensitive and specific radioimmunoassay hormone assays. Data were analysed using multifactor analysis of variance (ANOVA) to identify and correct for possible covariates and to correct for multiple comparisons. Fasting plasma GLP-1 and GIP concentrations were similar in all groups. The twins with frank NIDDM had a decreased incremental GLP-1 response during oral glucose ingestion compared with controls without family history of diabetes (AUC±sem; 0.55 ± 0.14 vs 1.17 ± 0.25 (mmol/l) × min, p < 0.05). The incremental GLP-1 secretion in the non-diabetic twins was not significantly different from neither their NIDDM co-twins nor the controls without family history of diabetes. The incremental GIP responses were similar in all study groups. Gender was identified as the major independent covariate for incremental glucose, insulin, GIP and GLP-1 responses, with higher values of all parameters in females. Waist-to-hip ratio and body mass index (BMI) were identified as independent but oppositely directed covariates for the incremental GLP-1 responses (waist-to-hip ratio: r = 0.43, p < 0.02; BMI: r= −0.34, p = 0.06). Incremental GLP-1 responses correlated with incremental insulin responses in the combined study population (N = 37; R = 0.42, p = 0.01). In conclusion, a decreased intestinal GLP-1 secretion may contribute to the abnormal insulin secretion during oral glucose ingestion in NIDDM twins. However, decreased secretion of gut incretin hormones (GLP-1 or GIP) does not explain all of the defects of pancreatic insulin secretion in NIDDM patients/twins or in non-diabetic individuals (identical twins) with a genetic predisposition to NIDDM.

Allan Vaag, Odense University Hospital, Department of Endocrinology and Internal Medicine M, Sdr. Boulevard, Odense, DK-5000, Denmark

Free access

Eva W Iepsen, Julie Lundgren, Jens J Holst, Sten Madsbad and Signe S Torekov

Objective

The hormones glucagon-like peptide 1 (GLP-1), peptide YY3-36 (PYY3–36), ghrelin, glucose-dependent insulinotropic polypeptide (GIP) and glucagon have all been implicated in the pathogenesis of obesity. However, it is unknown whether they exhibit adaptive changes with respect to postprandial secretion to a sustained weight loss.

Design

The study was designed as a longitudinal prospective intervention study with data obtained at baseline, after 8 weeks of weight loss and 1 year after weight loss.

Methods

Twenty healthy obese individuals obtained a 13% weight loss by adhering to an 8-week very low-calorie diet (800kcal/day). After weight loss, participants entered a 52-week weight maintenance protocol. Plasma levels of GLP-1, PYY3–36, ghrelin, GIP and glucagon during a 600-kcal meal were measured before weight loss, after weight loss and after 1 year of weight maintenance. Area under the curve (AUC) was calculated as total AUC (tAUC) and incremental AUC (iAUC).

Results

Weight loss was successfully maintained for 52 weeks. iAUC for GLP-1 increased by 44% after weight loss (P<0.04) and increased to 72% at week 52 (P=0.0001). iAUC for PYY3–36 increased by 74% after weight loss (P<0.0001) and by 36% at week 52 (P=0.02). tAUC for ghrelin increased by 23% after weight loss (P<0.0001), but at week 52, the increase was reduced to 16% compared with before weight loss (P=0.005). iAUC for GIP increased by 36% after weight loss (P=0.001), but returned to before weight loss levels at week 52. Glucagon levels were unaffected by weight loss.

Conclusions

Meal responses of GLP-1 and PYY3–36 remained increased 1 year after weight maintenance, whereas ghrelin and GIP reverted toward before-weight loss values. Thus, an increase in appetite inhibitory mechanisms and a partly decrease in appetite-stimulating mechanisms appear to contribute to successful long-term weight loss maintenance.

Free access

Monika J Bak, Nicolai Wewer Albrechtsen, Jens Pedersen, Bolette Hartmann, Mikkel Christensen, Tina Vilsbøll, Filip K Knop, Carolyn F Deacon, Lars O Dragsted and Jens J Holst

Aim

To determine the specificity and sensitivity of assays carried out using commercially available kits for glucagon and/or oxyntomodulin measurements.

Methods

Ten different assay kits used for the measurement of either glucagon or oxyntomodulin concentrations were obtained. Solutions of synthetic glucagon (proglucagon (PG) residues 33–61), oxyntomodulin (PG residues 33–69) and glicentin (PG residues 1–69) were prepared and peptide concentrations were verified by quantitative amino acid analysis and a processing-independent in-house RIA. Peptides were added to the matrix (assay buffer) supplied with the kits (concentration range: 1.25–300 pmol/l) and to human plasma and recoveries were determined. Assays yielding meaningful results were analysed for precision and sensitivity by repeated analysis and ability to discriminate low concentrations.

Results and conclusion

Three assays were specific for glucagon (carried out using the Millipore (Billerica, MA, USA), Bio-Rad (Sundbyberg, Sweden), and ALPCO (Salem, NH, USA) and Yanaihara Institute (Shizuoka, Japan) kits), but none was specific for oxyntomodulin. The assay carried out using the Phoenix (Burlingame, CA, USA) glucagon kit measured the concentrations of all three peptides (total glucagon) equally. Sensitivity and precision were generally poor; the assay carried out using the Millipore RIA kit performed best with a sensitivity around 10 pmol/l. Assays carried out using the BlueGene (Shanghai, China), USCN LIFE (Wuhan, China) (oxyntomodulin and glucagon), MyBioSource (San Diego, CA, USA) and Phoenix oxyntomodulin kits yielded inconsistent results.

Open access

George Tharakan, Preeshila Behary, Nicolai J Wewer Albrechtsen, Harvinder Chahal, Julia Kenkre, Alexander D Miras, Ahmed R Ahmed, Jens J Holst, Stephen R Bloom and Tricia Tan

Objective

Roux-en-Y gastric bypass (RYGB) surgery is currently the most effective treatment for diabetes and obesity. An increasingly recognized and highly disabling complication of RYGB is postprandial hypoglycaemia (PPH). The pathophysiology of PPH remains unclear with multiple mechanisms suggested including nesidioblastosis, altered insulin clearance and increased glucagon-like peptide-1 (GLP-1) secretion. Whilst many PPH patients respond to dietary modification, some have severely disabling symptoms. Multiple treatments are proposed, including dietary modification, GLP-1 antagonism, GLP-1 analogues and even surgical reversal, with none showing a more decided advantage over the others. A greater understanding of the pathophysiology of PPH could guide the development of new therapeutic strategies.

Methods

We studied a cohort of PPH patients at the Imperial Weight Center. We performed continuous glucose monitoring to characterize their altered glycaemic variability. We also performed a mixed meal test (MMT) and measured gut hormone concentrations.

Results

We found increased glycaemic variability in our cohort of PPH patients, specifically a higher mean amplitude glucose excursion (MAGE) score of 4.9. We observed significantly greater and earlier increases in insulin, GLP-1 and glucagon in patients who had hypoglycaemia in response to an MMT (MMT Hypo) relative to those that did not (MMT Non-Hypo). No significant differences in oxyntomodulin, GIP or peptide YY secretion were seen between these two groups.

Conclusion

An early peak in GLP-1 and glucagon may together trigger an exaggerated insulinotropic response to eating and consequent hypoglycaemia in patients with PPH.

Open access

Astrid Plamboeck, Simon Veedfald, Carolyn F Deacon, Bolette Hartmann, André Wettergren, Lars B Svendsen, Søren Meisner, Claus Hovendal, Filip K Knop, Tina Vilsbøll and Jens J Holst

Objective

Glucagon-like peptide 1 (GLP1) is rapidly inactivated by dipeptidyl peptidase 4 (DPP4), but may interact with vagal neurons at its site of secretion. We investigated the role of vagal innervation for handling of oral and i.v. glucose.

Design and methods

Truncally vagotomised subjects (n=16) and matched controls (n=10) underwent 50 g-oral glucose tolerance test (OGTT)±vildagliptin, a DPP4 inhibitor (DPP4i) and isoglycaemic i.v. glucose infusion (IIGI), copying the OGTT without DPP4i.

Results

Isoglycaemia was obtained with 25±2 g glucose in vagotomised subjects and 18±2 g in controls (P<0.03); thus, gastrointestinal-mediated glucose disposal (GIGD) – a measure of glucose handling (100%×(glucoseOGTT−glucoseIIGI/glucoseOGTT)) – was reduced in the vagotomised compared with the control group. Peak intact GLP1 concentrations were higher in the vagotomised group. Gastric emptying was faster in vagotomised subjects after OGTT and was unaffected by DPP4i. The early glucose-dependent insulinotropic polypeptide response was higher in vagotomised subjects. Despite this, the incretin effect was equal in both groups. DPP4i enhanced insulin secretion in controls, but had no effect in the vagotomised subjects. Controls suppressed glucagon concentrations similarly, irrespective of the route of glucose administration, whereas vagotomised subjects showed suppression only during IIGI and exhibited hyperglucagonaemia following OGTT. DPP4i further suppressed glucagon secretion in controls and tended to normalise glucagon responses in vagotomised subjects.

Conclusions

GIGD is diminished, but the incretin effect is unaffected in vagotomised subjects despite higher GLP1 levels. This, together with the small effect of DPP4i, is compatible with the notion that part of the physiological effects of GLP1 involves vagal transmission.

Free access

Marjan Alssema, Josina M Rijkelijkhuizen, Jens J Holst, Tom Teerlink, Peter G Scheffer, Elisabeth M W Eekhoff, Amalia Gastaldelli, Andrea Mari, Leen M't Hart, Giel Nijpels and Jacqueline M Dekker

Objective

To i) compare incretin responses to oral glucose and mixed meal of diabetic patients with the normoglycaemic population and ii) to investigate whether incretin responses are associated with hypertriglyceridaemia and alanine aminotransferase (ALT) as liver fat marker.

Design

A population-based study.

Methods

A total of 163 persons with normal glucose metabolism (NGM), 20 with intermediate hyperglycaemia and 20 with type 2 diabetes aged 40–65 years participated. Participants received a mixed meal and oral glucose load on separate occasions. Glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and glucagon profiles were analysed as total area under the curve (tAUC) and incremental area under the curve.

Results

In diabetic patients compared with persons with NGM, we found increased GLP-1 secretion (tAUC per hour) following oral glucose (23.2 pmol/l (95% CI 17.7–28.7) vs 18.0 (95% CI 16.9–19.1), P<0.05) but not after the mixed meal. GIP secretion among diabetic patients was increased on both occasions (82.9 pmol/l (55.9–109.8) vs 47.1 (43.8–50.4) for oral glucose and 130.6 (92.5–168.7) vs 83.2 (77.5–88.9) for mixed meal, both P<0.05). After oral glucose, GLP-1 (tAUC per hour) was inversely related to fasting triglycerides. GIP (tAUC per hour) was positively related to fasting and postprandial triglycerides. Higher fasting GIP levels were related to higher fasting and postprandial triglyceride levels and ALT.

Conclusion

This study confirms that in type 2 diabetes, GLP-1 secretion is generally preserved and that GIP secretion is exaggerated. The mechanism underlying the divergent associations of GLP-1 and GIP metabolism with fat metabolism and liver fat accumulation warrants further study.

Free access

Lotte B Nielsen, Kenneth B Ploug, Peter Swift, Cathrine Ørskov, Inger Jansen-Olesen, Francesco Chiarelli, Jens J Holst, Philip Hougaard, Sven Pörksen, Reinhard Holl, Carine de Beaufort, Steen Gammeltoft, Patrik Rorsman, Henrik B Mortensen and Lars Hansen

Group-author : on behalf of the Hvidøre Study Group

Objective: The ATP-dependent K+-channel (KATP) is critical for glucose sensing and normal glucagon and insulin secretion from pancreatic endocrine α- and β-cells. Gastrointestinal endocrine L- and K-cells are also glucose-sensing cells secreting glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotrophic polypeptide (GIP) respectively. The aims of this study were to 1) investigate the expression and co-localisation of the KATP channel subunits, Kir6.2 and SUR1, in human L- and K-cells and 2) investigate if a common hyperactive variant of the Kir6.2 subunit, Glu23Lys, exerts a functional impact on glucose-sensing tissues in vivo that may affect the overall glycaemic control in children with new-onset type 1 diabetes.

Design and methods: Western blot and immunohistochemical analyses were performed for expression and co-localisation studies. Meal-stimulated C-peptide test was carried out in 257 children at 1, 6 and 12 months after diagnosis. Genotyping for the Glu23Lys variant was by PCR-restriction fragment length polymorphism.

Results: Kir6.2 and SUR1 co-localise with GLP-1 in L-cells and with GIP in K-cells in human ileum tissue. Children with type 1 diabetes carrying the hyperactive Glu23Lys variant had higher HbA1C at bdiagnosis (coefficient = 0.61%, P = 0.02) and 1 month after initial insulin therapy (coefficient = 0.30%, P = 0.05), but later disappeared. However, when adjusting HbA1C for the given dose of exogenous insulin, the dose-adjusted HbA1C remained higher throughout the 12 month study period (coefficient = 0.42%, P = 0.03).

Conclusions: Kir6.2 and SUR1 co-localise in the gastrointestinal endocrine L- and K-cells. The hyperactive Glu23Lys variant of the KATP channel subunit Kir6.2 may cause defective glucose sensing in several tissues and impaired glycaemic control in children with type 1 diabetes.