Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Hiroshi Azuma x
  • All content x
Clear All Modify Search
Restricted access

Haruhiko Ohsawa, Azuma Kanatsuka, Yoshiharu Tokuyama, Takahide Yamaguchi, Hideichi Makino, Sho Yoshida, Hiroshi Horie, Atsuo Mikata, and Yoshibumi Kohen

Abstract.

Amyloid deposits in somatostatinomas are rare observations. To examine the characteristics of this amyloid, we compared amyloid deposits in a somatostatinoma to those found in pancreatic tissue in patients with Type II diabetes mellitus and in insulinomas, using immunohistochemical techniques and specific antibodies to islet amyloid polypeptide or other pancreatic hormones, as well as electron-microscopy. Antibodies to islet amyloid polypeptide regions 8-17 or 25-37 were confirmed to be specific. Amyloid deposits in patients with Type II diabetes mellitus and in insulinomas, but not those in the somatostatinoma strongly reacted with these antibodies, or to an antibody to amyloid P component. Amyloid deposits in the somatostatinoma were not reactive with antibodies to somatostatin or to other pancreatic hormones. Electron-microscopic examinations revealed that amyloid fibrils in the somatostatinoma were thinner and more randomly distributed than were those in islets from patients with Type II diabetes mellitus. As amyloid in somatostatinomas is unlike that consisting of islet amyloid polypeptide or other mature pancreatic hormones, it may be a novel type of local amyloid in pancreatic islets.

Restricted access

Shigeru Suzuki, Kumihiro Matsuo, Yoshiya Ito, Atsushi Kobayashi, Takahide Kokumai, Akiko Furuya, Osamu Ueda, Tokuo Mukai, Koichi Yano, Kenji Fujieda, Akimasa Okuno, Yusuke Tanahashi, and Hiroshi Azuma

Background: POU1F1 encodes both PIT-1α, which plays pivotal roles in pituitary development and GH, PRL and TSHB expression, and the alternatively spliced isoform PIT-1β, which contains an insertion of 26-amino acids (β-domain) in the transactivation domain of PIT-1α due to the use of an alternative splice acceptor at the end of the first intron. PIT-1β is expressed at much lower levels than PIT-1α and represses endogenous PIT-1α transcriptional activity. Although POU1F1 mutations lead to combined pituitary hormone deficiency (CPHD), no patients with β-domain mutations have been reported.

Results: Here, we report that a three-generation family exhibited different degrees of CPHD, including growth hormone deficiency with intrafamilial variability of prolactin/TSH insufficiency and unexpected prolactinoma occurrence. The CPHD was due to a novel POU1F1 heterozygous variant (c.143-69T>G) in intron 1 of PIT-1α (RefSeq number NM_000306) or as c.152T>G (p.Ile51Ser) in exon 2 of PIT-1β (NM_001122757). Gene splicing experiments showed that this mutation yielded the PIT-1β transcript without other transcripts. Lymphocyte PIT-1β mRNA expression was significantly higher in the patients with the heterozygous mutation than a control. A luciferase reporter assay revealed that the PIT-1β-Ile51Ser mutant repressed PIT-1α and abolished transactivation capacity for the rat prolactin promoter in GH3 pituitary cells.

Conclusions: We describe, for the first time, that PIT-1β mutation can cause CPHD through a novel genetic mechanism, such as PIT-1β overexpression, and that POU1F1 mutation might be associated with a prolactinoma. Analysis of new patients and long-term follow-up are needed to clarify the characteristics of PIT-1β mutations.