Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Herman Verloop x
Clear All Modify Search
Free access

Herman Verloop, Johannes W A Smit and Olaf M Dekkers

Objective

Thyroid function abnormalities are common during treatment with tyrosine kinase inhibitors such as sorafenib. Suggested causes are direct effects on thyroid tissue and increased extrathyroidal metabolism of serum thyroxine and 3,5,3-triiodothyronine. We postulated that tyrosine kinase inhibitors may affect the peripheral metabolism of TSH as well. The effect of sorafenib on TSH clearance was studied.

Design

In a study of athyreotic patients on TSH suppression therapy, TSH concentrations were measured after recombinant human TSH (rhTSH) injections before and after 26 weeks of sorafenib therapy.

Methods

Before and after the last week of sorafenib therapy, 20 patients with progressive differentiated thyroid carcinoma received a standard dose regimen of two injections 0.9 mg rhTSH on two consecutive days. TSH concentrations were measured 48 h (TSH48 h) and 96 h (TSH96 h) after the first rhTSH injection. The area under the curve (TSH-AUC), reflecting TSH content between 48 and 96 h following rhTSH administration, was calculated.

Results

TSH48 h levels (120.5 mU/l before vs 146.3 mU/l after; P=0.029), TSH96 h levels (22.0 mU/l before vs 35.5 mU/l after; P=0.001), and TSH-AUC (142.7 vs 186.8 mU/l; P=0.001) were significantly higher after sorafenib treatment. Higher sorafenib doses were associated with increased changes in TSH96 h and TSH-AUC. In two patients, TSH levels after sorafenib therapy exceeded 200 mU/l.

Conclusions

Sorafenib therapy is accompanied by higher rhTSH levels, probably due to a decreased TSH clearance. Further studies are recommended to clarify whether a decreased clearance of TSH is sorafenib specific.

Free access

Herman Verloop, Olaf M Dekkers, Robin P Peeters, Jan W Schoones and Johannes W A Smit

Iodothyronine deiodinases represent a family of selenoproteins involved in peripheral and local homeostasis of thyroid hormone action. Deiodinases are expressed in multiple organs and thyroid hormone affects numerous biological systems, thus genetic variation in deiodinases may affect multiple clinical endpoints. Interest in clinical effects of genetic variation in deiodinases has clearly increased. We aimed to provide an overview for the role of deiodinase polymorphisms in human physiology and morbidity. In this systematic review, studies evaluating the relationship between deiodinase polymorphisms and clinical parameters in humans were eligible. No restrictions on publication date were imposed. The following databases were searched up to August 2013: Pubmed, EMBASE (OVID-version), Web of Science, COCHRANE Library, CINAHL (EbscoHOST-version), Academic Search Premier (EbscoHOST-version), and ScienceDirect. Deiodinase physiology at molecular and tissue level is described, and finally the role of these polymorphisms in pathophysiological conditions is reviewed. Deiodinase type 1 (D1) polymorphisms particularly show moderate-to-strong relationships with thyroid hormone parameters, IGF1 production, and risk for depression. D2 variants correlate with thyroid hormone levels, insulin resistance, bipolar mood disorder, psychological well-being, mental retardation, hypertension, and risk for osteoarthritis. D3 polymorphisms showed no relationship with inter-individual variation in serum thyroid hormone parameters. One D3 polymorphism was associated with risk for osteoarthritis. Genetic deiodinase profiles only explain a small proportion of inter-individual variations in serum thyroid hormone levels. Evidence suggests a role of genetic deiodinase variants in certain pathophysiological conditions. The value for determination of deiodinase polymorphism in clinical practice needs further investigation.

Free access

Marloes Louwerens, Bente C Appelhof, Herman Verloop, Marco Medici, Robin P Peeters, Theo J Visser, Anita Boelen, Eric Fliers, Johannes W A Smit and Olaf M Dekkers

Objective

Research on determinants of well-being in patients on thyroid hormone replacement therapy is warranted, as persistent fatigue-related complaints are common in this population. In this study, we evaluated the impact of different states of hypothyroidism on fatigue and fatigue-related symptoms. Furthermore, the relationship between fatigue and the TSH receptor (TSHR)-Asp727Glu polymorphism, a common genetic variant of the TSHR, was analyzed.

Design

A cross-sectional study was performed in 278 patients (140 patients treated for differentiated thyroid carcinoma (DTC) and 138 with autoimmune hypothyroidism (AIH)) genotyped for the TSHR-Asp727Glu polymorphism.

Methods

The multidimensional fatigue inventory (MFI-20) was used to assess fatigue, with higher MFI-20 scores indicating more fatigue-related complaints. MFI-20 scores were related to disease status and Asp727Glu polymorphism status.

Results

AIH patients scored significantly higher than DTC patients on all five MFI-20 subscales (P<0.001), independent of clinical and thyroid hormone parameters. The frequency of the TSHR-Glu727 allele was 7.2%. Heterozygous DTC patients had more favorable MFI-20 scores than wild-type DTC patients on four of five subscales. The modest effect of the TSHR-Asp727Glu polymorphism on fatigue was found in DTC patients only.

Conclusions

AIH patients had significantly higher levels of fatigue compared with DTC patients, which could not be attributed to clinical or thyroid hormone parameters. The modest effect of the TSHR-Asp727Glu polymorphism on fatigue in DTC patients should be confirmed in other cohorts.