Objective
Differentiation between central diabetes insipidus (cDI) and primary polydipsia (PP) remains challenging in clinical practice. Although the hypertonic saline infusion test led to high diagnostic accuracy, it is a laborious test requiring close monitoring of plasma sodium levels. As such, we leverage machine learning (ML) to facilitate differential diagnosis of cDI.
Design
We analyzed data of 59 patients with cDI and 81 patients with PP from a prospective multicenter study evaluating the hypertonic saline test as new test approach to diagnose cDI. Our primary outcome was the diagnostic accuracy of the ML-based algorithm in differentiating cDI from PP patients.
Methods
The data set used included 56 clinical, biochemical, and radiological covariates. We identified a set of five covariates which were crucial for differentiating cDI from PP patients utilizing standard ML methods. We developed ML-based algorithms on the data and validated them with an unseen test data set.
Results
Urine osmolality, plasma sodium and glucose, known transsphenoidal surgery, or anterior pituitary deficiencies were selected as input parameters for the basic ML-based algorithm. Testing it on an unseen test data set resulted in a high area under the curve (AUC) score of 0.87. A further improvement of the ML-based algorithm was reached with the addition of MRI characteristics and the results of the hypertonic saline infusion test (AUC: 0.93 and 0.98, respectively).
Conclusion
The developed ML-based algorithm facilitated differentiation between cDI and PP patients with high accuracy even if only clinical information and laboratory data were available, thereby possibly avoiding cumbersome clinical tests in the future.