Search Results

You are looking at 1 - 10 of 21 items for

  • Author: G Emons x
Clear All Modify Search
Restricted access

O. ORTMANN, H. WIESE and G. EMONS

Restricted access

G. EMONS, U. FINGSCHEIDT, O. ORTMANN, R. STURM and R. KNUPPEN

Restricted access

O. ORTMANN, R. STURM, R. KNUPPEN and G. EMONS

Restricted access

O. ORTMANN, G. EMONS, R. KNUPPEN and K.J. CATT

Restricted access

G. EMONS, O. ORTMANN, U. FINGSCHEIDT, P. BALL and R. KNUPPEN

Free access

G Emons, S Weiss, O Ortmann, C Grundker and KD Schulz

OBJECTIVE: More than 80% of human ovarian cancers express LHRH and its receptor. The proliferation of human ovarian cancer cell lines is reduced by both LHRH agonists and antagonists. This study was designed to further clarify the possible biological function of this LHRH system. DESIGN: As LHRH agonists and antagonists uniformly reduce proliferation of human ovarian cancer in a dose-dependent way, the effect of low concentrations of authentic LHRH was studied. In addition, longer periods of treatment (up to 9 days) were analyzed. To assess the physiological role of LHRH produced by ovarian cancer cells it was neutralized by adequate concentrations of a specific LHRH antiserum. METHODS: Human ovarian cancer cells EFO-21 and EFO-27, which express LHRH and its receptor, were incubated for 1-9 days with increasing concentrations (1pmol/l to 10 micromol/l) of authentic LHRH or with concentrations of LHRH antiserum capable of neutralizing at least 1nmol/l LHRH. Proliferation was assessed by counting cells. RESULTS AND CONCLUSIONS: Authentic LHRH reduced time- and dose-dependently proliferation (by maximally mean+/-s.e.m. 32.7 +/- 4.4%, Newman-Keuls, P < 0.001) of both ovarian cancer cell lines. At very low concentrations (1pmol/l) a marginal reduction of proliferation or no effect was observed. A mitogenic effect of authentic LHRH was never detected. Treatment of ovarian cancer cell cultures with antiserum to LHRH significantly increased (up to mean+/-s.e.m. 121.0 +/- 2.8% of controls, Newman-Keuls P <0.001) proliferation of EFO-21 and EFO-27 cells. These findings suggest that LHRH produced by human ovarian cancer cells might act as a negative autocrine regulator of proliferation.

Free access

O Ortmann, W Asmus, K Diedrich, KD Schulz and G Emons

Pituitary adenylate cyclase-activating polypeptide (PACAP) releases LH and FSH from anterior pituitary cells. Although this effect is relatively weak, it has a strong sensitizing action on GnRH-induced gonadotropin secretion. Here we investigated the possibility that ovarian steroids, which are well-known modulators of LH secretion, interact with PACAP and GnRH in pituitary gonadotrophs. Rat pituitary cells were treated for 48 h with vehicle, 1 nmol/l estradiol, 1 nmol/l estradiol + 100 nmol/l progesterone or 48 h with 1 nmol/l estradiol and 4 h with 100 nmol/l progesterone. The cells were stimulated for 3 h with 1 nmol/l GnRH or 100 nmol/l PACAP. Estradiol treatment alone enhanced basal as well as GnRH- or PACAP-stimulated LH secretion. LH release was facilitated by additional short-term progesterone treatment. Long-term treatment with estradiol and progesterone led to reduced LH responses to GnRH and PACAP. Neither treatment paradigms affected cAMP production. However, estradiol treatment led to enhanced cAMP accumulation in quiescent or GnRH-stimulated cells. PACAP-induced increases of cAMP production were inhibited by estradiol treatment. After 7-h preincubation with 10 nmol/l PACAP, cells responded with enhanced LH secretion to GnRH stimulation. When steroid pretreatment was performed the responsiveness of gonadotrophs to low concentrations of GnRH was still increased. In contrast, at high concentrations of GnRH the sensitizing action of PACAP on agonist-induced LH secretion was lost in steroid-treated cells. There were no significant differences between the steroid treatment paradigms. It is concluded that estradiol but not progesterone acts as a modulator of adenylyl cyclase in gonadotrophs. The stimulatory effect of estradiol is thought to be involved in its sensitizing action on agonist-induced LH secretion. The inhibitory effect of estradiol on PACAP-stimulated adenylyl cyclase activities seems to be responsible for the loss of its action to sensitize LH secretory responses to GnRH.

Restricted access

G. Emons, O. Ortmann, U. Fingscheidt, P. Ball and R. Knuppen

Abstract. Dispersed pituitary cells from adult female rats were preincubated for different time periods (0– 12 h) in the absence or presence of 10−9 moestradiol (E2) or 4-hydroxyoestradiol (4-OHE2). Then the media were changed and the cells incubated for 4 h with either vehicle, or E2, or 4-OHE2 and additionally with different concentrations (10−11– 10−7 m) of gonadotrophin-releasing hormone (GnRH). Treatment of pituitary cells with E2 for 4 h (i.e. no preincubation with E2) significantly decreased the LH-response to GnRH at concentrations ≥ 10−10 m of the decapeptide. During a transition time of approximately 10 h (i.e. in cultures preincubated with E2 or vehicle for 2, 4, 6 or 8 h and then coincubated with E2 or vehicle and GnRH for 4 h) no differences between E2-and vehicle-treated cultures were observed. After 14 and 16 h of E2-treatment (i.e. 10 or 12 h preincubation and 4 h coincubation with GnRH) the LH-responses to GnRH in these cultures were significantly higher than in the respective controls. A nearly identical reaction pattern was observed when 4-OHE2 was used instead of E2.

In a second series of experiments dispersed rat pituitary cells were suspended in a carrier gel and continuously perifused with medium, using small chromatography columns. When these cells were exposed for 4 min to 10−9 m GnRH at 60 or 48 min intervals, they reacted with reproducible pulsatile LH-discharges during at least 6 subsequent stimuli with the decapeptide. When E2 (10−9 m) was added to the perifusion medium, the LH-responses to GnRH were significantly reduced, starting 36 min after the onset of E2-treatment. These data indicate: 1) In the rat, the negative oestrogen effect is at least in part directly mediated at the pituitary level. 2) The sensitizing effect of oestrogens on rat gonadotrophs to GnRH is significant already after 14 to 16 h. 3) E2 and the catecholoestrogen 4-OHE2 have the same effects in this system. 4) The negative E2-effect on GnRH-induced LH-release is significant after only 36 min, a finding bringing up the question of a non-genomic mechanism.