Search Results

You are looking at 1 - 10 of 17 items for

  • Author: FF Casanueva x
Clear All Modify Search
Free access

E Carro, LM Seoane, R Senaris, FF Casanueva and C Dieguez

BACKGROUND: Leptin has recently been shown to have a stimulatory effect on basal GH secretion. However, the mechanisms by which leptin exert this effect are not yet clear. GHRH and GH-releasing peptide (GHRP)-6 are the two most potent GH secretagogues described to date. OBJECTIVE: To determine if leptin could also enhance in vivo GH responses to a maximal dose of GHRH. DESIGN: Leptin (10microg i.c.v.) or vehicle was administered at random before GHRH (10microg/kg i,v.) or GHRP-6 (50microg/kg i.v.), to freely-moving rats with food available ad libitum and to (48h) food-deprived rats. METHODS: Leptin and GH concentrations were measured by radioimmunoassay. Comparison between the different groups was assessed by the Mann-Whitney test. RESULTS: In comparison with fed rats, food-deprived rats showed a marked decrease in GH responses to GHRH as assessed by the area under the curve (5492+/-190ng/ml in fed rats and 1940+/-128ng/ml in fasted rats; P<0.05) and GHRP-6 (3695+/-450 in fed rats and 1432+/-229 in fasted rats; P<0.05). In comparison with its effects in vehicle-treated rats, leptin administered to food-deprived rats markedly increased GH responses to both GHRH (6625+/-613ng/ml; P<0.05) and GHRP-6 (5862+/-441ng/ml; P<0.05). CONCLUSIONS: These data suggest that the blunted GH response to GHRH and GHRP-6 in food-deprived rats is a functional and reversible state, and that the decreased leptin concentrations could be the primary defect responsible for the altered GH secretion in food-deprived rats.

Free access

JE Caminos, LM Seoane, SA Tovar, FF Casanueva and C Dieguez

OBJECTIVE: To assess whether some of the alterations in energy homeostasis present in thyroid function disorders and GH deficiency could be mediated by ghrelin. DESIGN: To assess the influence of thyroid status on ghrelin, adult male Sprague-Dawley rats were treated with vehicle (euthyroid), amino-triazole (hypothyroid) or l-thyroxine (hyperthyroid). The influence of GH on ghrelin was assessed in wild-type (control) and GH-deficient (dwarf) Lewis rats. Evaluation of gastric ghrelin mRNA expression in the stomach was carried out by Northern blot. Circulating levels of ghrelin were measured by radioimmunoassay. RESULTS: Hypothyroidism resulted in an increase in gastric ghrelin mRNA levels (euthyroid: 100+/-3.2% vs hypothyroid: 127.3+/-6.5%; P<0.01), being decreased in hyperthyroid rats (70+/-5.4%; P<0.01). In keeping with these results, circulating plasma ghrelin levels were increased in hypothyroid (euthyroid: 124+/-11 pg/ml vs hypothyroid: 262+/-39 pg/ml; P<0.01) and decreased in hyperthyroid rats (75+/-6 pg/ml; P<0.01). Using an experimental model of GH deficiency, namely the dwarf rat, we found a decrease in gastric ghrelin mRNA levels (controls: 100+/-6% vs dwarf: 66+/-5.5%; P<0.01) and circulating plasma ghrelin levels (controls: 124+/-12 pg/ml vs dwarf: 81+/-7 pg/ml; P<0.01). CONCLUSION: This study provides the first evidence that ghrelin gene expression is influenced by thyroid hormones and GH status and provides further evidence that ghrelin may play an important role in the alteration of energy homeostasis and body weight present in these pathophysiological states.

Restricted access

MA Tome, M Lage, JP Camina, RV Garcia-Mayor, C Dieguez and FF Casanueva

Sex-based differences in serum leptin concentrations have been reported in adolescence and adulthood. To discover when such differences were generated, serum leptin concentrations were measured in umbilical cord blood from 46 healthy infants and in the mother's blood at delivery. Considering the respective body weights of the mothers and infants (68.5 +/- 1.3 kg and 3.3 +/- 0.0 kg), umbilical cord concentrations of leptin were disproportionately high in the infants (9.4 +/- 1.2 micrograms/l) compared with those in the mothers (18.7 +/- 1.3 micrograms/l). There was a wide variation in the infants leptin values (1.2 +/- 56.8 micrograms/l) that did not correlate with height, weight, cephalic circumference, or any other growth-related parameter. The most striking differences emerged when results were analysed by sex: umbilical cord concentrations of leptin in the girls (12.9 +/- 2.2 micrograms/l) were significantly (P < 0.01) greater than those in the boys (6.8 +/- 0.9 micrograms/l), although no differences in leptin concentrations were observed between the mothers who gave birth to a girl (19.5 +/- 2.2 micrograms/l) and those who gave birth to a boy (18.1 +/- 1.7 micrograms/l). The sex-based differences were not attributable to any growth-related differences between the sexes, except heavier placental weights in the girls (P < 0.007) than in the boys. These differences in leptin concentrations may reflect a sex-based difference in the regulation of leptin production by the fetal adipose tissue.

Free access

C Menendez, R Baldelli, M Lage, X Casabiell, V Pinero, J Solar, C Dieguez and FF Casanueva

OBJECTIVE: Leptin is an adipocyte-secreted hormone acting as a signal to the central nervous system, where it regulates energy homeostasis and neuroendocrine processes. Leptin plasma levels are mainly regulated by the percentage of body fat, but are also controlled by several metabolic and nutritional variables. Data regarding leptin secretion suggest that it is gender regulated, and higher levels are present in women than men; however, the biological basis for this sex-related difference is unknown. To clarify those points, a systematic study with tissue cultures from human omental adipose tissue was performed. DESIGN AND METHODS: Surgically obtained samples from 137 patients (68 women, 69 men) were evaluated. The assay was standardized in periods of 24 h ending at 96 h. Each adipose tissue sample from a single donor was incubated in triplicate and leptin results expressed as the mean of the integrated secretion into the medium (nanograms of leptin/g tissue per time). RESULTS: Tissue adipose cultures showed a steady leptin secretion throughout the 96 h studied, with the peak of secretory activity reached at 48 h; afterwards, the in vitro secretion reached a plateau state. Spontaneous leptin secretion in the 24 h and 48 h period, as well as the area under the curve analyzed in the 0-48 h period, showed a gender-based difference that was significantly (P<0. 05) higher in women than in men. When data of spontaneous leptin secretion were correlated with the body mass index (BMI) of the donors, no correlation was found. This suggests that in vivo leptin levels are dependent on the total amount of fat of the individual, but independent of the leptin secretory rate by the adipose tissue of the donor. CONCLUSIONS: Leptin secretion from omental adipose tissue in vitro is: (i) significantly higher in samples from women than in samples from men; and (ii) not correlated with the BMI, showing that in vitro leptin secretion is not related to the adiposity of the donor.

Free access

F Cordido, P Alvarez-Castro, ML Isidro, FF Casanueva and C Dieguez

OBJECTIVE: It has been gradually realized that GH may have important physiological functions in adult humans. The biochemical diagnosis of adult GHD is established by provocative testing of GH secretion. The insulin-tolerance test (ITT) is the best validated. The ITT has been challenged because of its low degree of reproducibility and lack of normal range, and is contra-indicated in common clinical situations. Furthermore, in severely obese subjects the response to the ITT frequently overlaps with those found in non-obese adult patients with GHD. DESIGN: The aim of the present study was to evaluate the diagnostic capability of four different stimuli of GH secretion: ITT, GHRH, GHRH plus acipimox (GHRH+Ac), and GHRH plus GHRP-6 (GHRH+GHRP-6), in two pathophysiological situations: hypopituitarism and obesity, and normal subjects. METHODS: Eight adults with hypopituitarism (four female, four male) aged 41-62 Years (48.8+/-1.4 Years), ten obese normal patients (five female, five male) aged 38-62 Years (48.1+/-2.5 Years), with a body mass index of 34.2+/-1.2 kg/m(2), and ten normal subjects (five female, five male) aged 33-62 Years (48.1+/-2.8 Years) were studied. Four tests were performed on each patient or normal subject: An ITT (0.1 U/kg, 0.15 U/kg for obese, i.v., 0 min), GHRH (100 microg, i.v., 0 min), GHRH (100 microg, i.v., 0 min) preceded by acipimox (250 mg, orally, at -270 min and -60 min) (GHRH+Ac); and GHRH (100 microg, i.v., 0 min) plus GHRP-6 (100 microg, i.v., 0 min) (GHRH+GHRP-6). Serum GH was measured by radioimmunoassay. Statistical analyses were performed by Wilcoxon rank sum and by Mann-Whitney tests. RESULTS: After the ITT the mean peak GH secretion was 1.5+/-0.3 microg/l for hypopituitary, 10.1+/-1.7 microg/l (P<0.05 vs hypopituitary) for obese and 17.8+/-2.0 microg/l (P<0.05 vs hypopituitary) for normal. GHRH-induced GH secretion was 2+/-0.7 microg/l for hypopituitary, 3.9+/-1.2 microg/l (P=NS vs hypopituitary) for obese and 22.2+/-3.8 microg/l (P<0.05 vs hypopituitary) for normal. After GHRH+Ac, mean peak GH secretion was 3.3+/-1.4 microg/l for hypopituitary, 14.2+/-2.7 microg/l (P<0.05 vs hypopituitary) for obese and 35.1+/-5.2 microg/l (P<0.05 vs hypopituitary) for normal. GHRH+GHRP-6 induced mean peak GH secretion of 4.1+/-0.9 microg/l for hypopituitary, 38.5+/-6.5 microg/l (P<0.05 vs hypopituitary) for obese and 68.1+/-5.5 microg/l (P<0.05 vs hypopituitary) for normal subjects. Individually considered, after ITT, GHRH or GHRH+Ac, the maximal response in hypopituitary patients was lower than the minimal response in normal but higher than the minimal response in obese subjects. In contrast, after GHRH+GHRP-6 the maximal response in hypopituitary patients was lower than the minimal response in normal and obese subjects. CONCLUSIONS: This study suggests that, in this group of patients, although both acipimox and GHRP-6 partially reverse the functional hyposomamotropism of obesity after GHRH, but are unable to reverse the organic hyposomatotropism of hypopituitarism, the combined test GHRH+GHRP-6 most accurately distinguishes both situations, without the side effects of ITT.

Free access

L Pinilla, LM Seoane, L Gonzalez, E Carro, E Aguilar, FF Casanueva and C Dieguez

The aim of this study was to investigate the regulation of serum leptin levels by gender and gonadal steroid milieu. Thus, we measured serum leptin levels by radioimmunoassay in (a) intact male and female rats, (b) female rats at different stages of the estrous cycle and (c) ovariectomized or orchidectomized rats. Gonadectomized groups were or were not implanted with silastic capsules (10 or 30 mm in length, 1.519mm internal diameter; 3.06 mm external diameter) containing estradiol or testosterone and decapitated two weeks later. We found (i) intact female rats weighing 50 g, 250 g and 300 g exhibited higher serum leptin concentrations than intact male rats of similar body weight; (ii) leptin concentrations were not affected by the phase of the estrous cycle; (iii) two weeks after gonadectomy serum leptin concentrations increased in both male (from 4.47+/-1.87 to 8.76+/-1.24 ng/ml) and female (from 1.97+/-0.46 to 5.29+/-0.51 ng/ml) rats. The ovariectomy-induced increase in serum leptin levels was not dependent, at least completely, on changes in body weight since it could be observed when comparisons were made between ovariectomized rats and intact rats in estrus matched for body weight. In contrast the effect of orchidectomy on serum leptin levels appears to be dependent on changes in body weight since it was no longer observed when comparisons were made with a group of intact male rats matched for body weight. In conclusion, these results suggest that serum leptin concentrations are controlled by gonadal function either directly or as a consequence of changes in body weight.

Free access

O Gualillo, JE Caminos, M Kojima, K Kangawa, E Arvat, E Ghigo, FF Casanueva and C Dieguez

OBJECTIVE: The recently isolated endogenous GH secretagogue, named ghrelin, is a gastric peptide of 28 amino acids with an n-octanoylation in the serine 3 that confers the biological activity to this factor. Ghrelin has been shown to directly stimulate GH release in vivo and in vitro and to be involved in the regulation of gastric acid secretion and motility. In the present work we have studied gender and gonadal dependency of ghrelin mRNA expression in rat stomach. DESIGN AND METHODS: We analysed ghrelin mRNA expression in rat stomach by Northern blot analysis. We also examined the effect of gonadal steroid deprivation on ghrelin mRNA expression. RESULTS AND CONCLUSIONS: The results obtained showed clearly that ghrelin gastric mRNA expression increased with age in young rats (up to 90 days old) but exhibited no significant sex difference at each age tested. Ghrelin mRNA levels were lowest at postnatal day 9, reaching a stable level of expression at day 40 in both female and male rats, although the increase in female rats appears much more gradual than that in males. Moreover, neither ovariectomy nor orchidectomy significantly modified ghrelin mRNA gastric levels in adult rats. In conclusion, these data indicate that ghrelin mRNA expression is associated with age and that a progressive increase is present from the perinatal period up to a stable level after puberty. Gonadal hormones did not alter ghrelin mRNA levels. Taken together, these data showed that ghrelin mRNA levels in young rats are age but not gender dependent, and are not influenced by gonadal steroids.

Free access

LM Seoane, S Tovar, R Baldelli, E Arvat, E Ghigo, FF Casanueva and C Dieguez

Ghrelin is a growth hormone-releasing acylated peptide from stomach. The purified peptide consist of 28 amino acids in which the serine 3 residue is n-octanoylated. Ghrelin has been reported to increase in vitro GH secretion as well as in vivo plasma GH levels in pentobarbital anaesthetized rats. The aim of this work was to characterize the stimulatory effect of Ghrelin on in vivo GH secretion in freely-moving rats. Furthermore, we compare the effect of Ghrelin with GHRH. In addition to vehicle, we administered different doses of Ghrelin (3 nmol/Kg, 12 nmol/Kg and 60 nmol/Kg); GHRH (3 nmol/Kg and 12 nmol/kg). Plasma GH levels were measured in blood samples taken at 5, 10, 15, 20, 30 and 45 min after their administration as an i.v. bolus at 0 min. Administration of Ghrelin led to an increase in plasma GH levels at all time-points tested (5, 10, 15, 20 and 30 min, P<0.01; and 45 min, P<0.05) in comparison to control untreated rats. A maximal stimulatory effect on plasma GH was observed following administration of 12 nmol/Kg of Ghrelin, the effect being similar to the one obtained with 60 nmol/Kg in terms of both AUC and mean peak GH levels. At the dose of 3 nmol/Kg GHRH and Ghrelin exhibited a similar stimulatory effect in term of both, AUC and mean peak GH levels. However following administration of a dose of 12 nmol/Kg, the effect of Ghrelin was much greater than the same dose of GHRH in terms of both AUC and mean peak GH levels. In summary, this study provides the first evidences that Ghrelin exert a marked stimulatory effect in plasma GH levels in freely-moving rats and provides further evidences that Ghrelin may play an important role in the physiological control of GH secretion.

Free access

LM Seoane, SA Tovar, D Perez, F Mallo, M Lopez, R Senaris, FF Casanueva and C Dieguez

BACKGROUND/AIMS: Orexins (OXs) are a newly described family of hypothalamic neuropeptides. Based on the distribution of OX neurons and their receptors in the brain, it has been postulated that they could play a role in the regulation of neuroendocrine function. GH secretion is markedly influenced by nutritional status and body weight. To investigate the role OX-A plays in the neuroregulation of GH secretion we have studied its effect on spontaneous GH secretion as well as GH responses to GHRH and ghrelin in freely moving rats. Finally, we also assessed the effect of OX-A on in vitro GH secretion. METHODS: We administered OX-A (10 microg, i.c.v.) or vehicle (10 microl, i.c.v.) to freely moving rats. Spontaneous GH secretion was assessed over 6 h with blood samples taken every 15 min. RESULTS: Administration of OX-A led to a decrease in spontaneous GH secretion in comparison with vehicle-treated rats, as assessed by mean GH levels (means+/-s.e.m. 4.2+/-1.7 ng/ml vs 9.4+/-2.2 ng/ml; P<0.05), mean GH amplitude (3.6+/-0.5 ng/ml vs 20.8+/-5.6 ng/ml; P<0.01) and area under the curve (848+/-379 ng/ml per 4 h vs 1957+/-458 ng/ml per 4 h; P<0.05). In contrast, OX-A failed to modify in vivo GH responses to GHRH (10 microg/kg, i.v.) although it markedly blunted GH responses to ghrelin (40 microg/kg, i.v.) (mean peak GH levels: 331+/-71 ng/ml, vehicle, vs 43+/-11 ng/ml in OX-A-treated rats; P<0.01). Finally, OX-A infusion (10(-7), 10(-8) or 10(-9) M) failed to modify in vitro basal GH secretion or GH responses to GHRH, ghrelin and KCl. CONCLUSIONS: These data indicate that OX-A plays an inhibitory role in GH secretion and may act as a bridge among the regulatory signals that are involved in the control of growth, nutritional status and sleep regulation.