Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Elisabeth Lerchbaum x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Elisabeth Lerchbaum and Barbara Obermayer-Pietsch


Vitamin D has been well-known for its function in maintaining calcium and phosphorus homeostasis and promoting bone mineralization. There is some evidence that in addition to sex steroid hormones, the classic regulators of human reproduction, vitamin D also modulates reproductive processes in women and men.


The aim of this review was to assess the studies that evaluated the relationship between vitamin D and fertility in women and men as well as in animals.


We performed a systematic literature search in Pubmed for relevant English language publications published until October 2011.

Results and discussion

The vitamin D receptor (VDR) and vitamin D metabolizing enzymes are found in reproductive tissues of women and men. Vdr knockout mice have significant gonadal insufficiency, decreased sperm count and motility, and histological abnormalities of testis, ovary and uterus. Moreover, we present evidence that vitamin D is involved in female reproduction including IVF outcome (clinical pregnancy rates) and polycystic ovary syndrome (PCOS). In PCOS women, low 25-hydroxyvitamin D (25(OH)D) levels are associated with obesity, metabolic, and endocrine disturbances and vitamin D supplementation might improve menstrual frequency and metabolic disturbances in those women. Moreover, vitamin D might influence steroidogenesis of sex hormones (estradiol and progesterone) in healthy women and high 25(OH)D levels might be associated with endometriosis. In men, vitamin D is positively associated with semen quality and androgen status. Moreover, vitamin D treatment might increase testosterone levels. Testiculopathic men show low CYP21R expression, low 25(OH)D levels, and osteoporosis despite normal testosterone levels.

Free access

Elisabeth Lerchbaum, Verena Schwetz, Albrecht Giuliani, and Barbara Obermayer-Pietsch


There is evidence suggesting a strong genetic background of polycystic ovary syndrome (PCOS). We aim to study the metabolic and endocrine characteristics of PCOS women with and without a family history (FHx) of type 2 diabetes mellitus (T2DM) and PCOS.


Cross-sectional study.


We analysed the association of T2DM FHx and PCOS FHx with metabolic and endocrine parameters in 714 PCOS women.


A positive FHx of T2DM and PCOS were prevalent in 36.8 and 21.4% of PCOS women respectively. We found an independent association of T2DM FHx with central fat accumulation, obesity, prediabetes, metabolic syndrome (MS), insulin resistance, low HDL and elevated blood pressure (P<0.05 for all). PCOS FHx was independently associated with prediabetes (P<0.05). We observed an independent association of PCOS FHx with clinical and biochemical hyperandrogenism (P<0.05 for all), whereas there was no independent association of T2DM FHx with hyperandrogenism. PCOS women with a positive FHx of both T2DM and PCOS had an adverse metabolic and endocrine profile including a linear increase in risk of obesity, central fat accumulation, MS, prediabetes and low HDL (P<0.05 for all).


Our findings suggest that the assessment of FHx might allow risk stratification of PCOS women, which is important considering the high prevalence of PCOS.

Free access

Simona Gaberšček, Katja Zaletel, Verena Schwetz, Thomas Pieber, Barbara Obermayer-Pietsch, and Elisabeth Lerchbaum

Thyroid disorders, especially Hashimoto's thyroiditis (HT), and polycystic ovary syndrome (PCOS) are closely associated, based on a number of studies showing a significantly higher prevalence of HT in women with PCOS than in controls. However, the mechanisms of this association are not as clear. Certainly, genetic susceptibility contributes an important part to the development of HT and PCOS. However, a common genetic background has not yet been established. Polymorphisms of the PCOS-related gene for fibrillin 3 (FBN3) could be involved in the pathogenesis of HT and PCOS. Fibrillins influence the activity of transforming growth factor beta (TGFβ). Multifunctional TGFβ is also a key regulator of immune tolerance by stimulating regulatory T cells (Tregs), which are known to inhibit excessive immune response. With lower TGFβ and Treg levels, the autoimmune processes, well known in HT and assumed in PCOS, might develop. In fact, lower levels of TGFβ1 were found in HT as well as in PCOS women carrying allele 8 of D19S884 in the FBN3 gene. Additionally, vitamin D deficiency was shown to decrease Tregs. Finally, high estrogen-to-progesterone ratio owing to anovulatory cycles in PCOS women could enhance the immune response. Harmful metabolic and reproductive effects were shown to be more pronounced in women with HT and PCOS when compared with women with HT alone or with controls. In conclusion, HT and PCOS are associated not only with respect to their prevalence, but also with regard to etiology and clinical consequences. However, a possible crosstalk of this association is yet to be elucidated.

Free access

Elisabeth Lerchbaum, Hans-Jürgen Gruber, Verena Schwetz, Albrecht Giuliani, Reinhard Möller, Thomas R Pieber, and Barbara Obermayer-Pietsch


Women with polycystic ovary syndrome (PCOS) frequently suffer from metabolic disturbances and might be affected by hepatic steatosis. The fatty liver index (FLI) was developed as a simple and accurate predictor of hepatic steatosis. We aimed to analyze the association of FLI with endocrine and metabolic parameters in a cohort of PCOS and control women.


FLI was calculated using body mass index (BMI), waist circumference, triglycerides, and gamma-glutamyl transferase in 611 PCOS and 139 BMI-matched control women within the same age range. Elevated FLI was defined as >60. Metabolic, endocrine, and anthropometric measurements and oral glucose tolerance tests were performed.


PCOS women had significantly higher FLI levels than control women in age-adjusted analyses (11.4 (4.3–48.8) and 8.8 (3.9–35.0), respectively, P=0.001), whereas fibrosis indices were similar (aspartate amino transferase-to-platelet ratio index) or lower (FIB-4) respectively. In binary logistic regression analysis adjusted for age, odds ratio (OR) for elevated FLI was 2.52 (1.31–4.85), P=0.006, for PCOS women when compared with controls. PCOS women with high FLI levels had an adverse anthropometric, metabolic, and endocrine risk profile. The prevalence of elevated FLI was 88.7% in PCOS women with metabolic syndrome (MS) and 11.3% in PCOS women without MS (P<0.001). In control women, elevated FLI was present in 66.7% of women with MS and 30.8% of women without MS.


High FLI levels are a common finding in obese PCOS women and are closely linked to MS. FLI calculation might be a useful tool for identifying PCOS patients at high risk for metabolic and hepatic disturbances.