Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Denise Zwanziger x
Clear All Modify Search
Full access

Vera Tiedje, Saskia Ting, Robert Fred Walter, Thomas Herold, Karl Worm, Julia Badziong, Denise Zwanziger, Kurt Werner Schmid and Dagmar Führer

Objective

Medullary thyroid carcinoma (MTC) occurs sporadically in 75% of patients. Metastatic disease is associated with significantly poorer survival. The aim of this study was to identify prognostic markers for progressive MTC and oncogenic factors associated with response to vandetanib therapy.

Design and methods

Clinical courses of 32 patients with sporadic MTC (n=10 pN0cM0, n=8 pN1cM0, n=14 pN1cM1) were compared with genetic profiles of the patients’ primary tumour tissue. Analysis for RET proto-oncogene mutations was performed by Sanger sequencing and next-generation sequencing (NGS). The mRNA expression (mRNA count) of 33 targets was measured by nCounter NanoString analysis.

Results

Somatic RET mutations occurred in 21/32 patients. The RET918 mutation was found in 8/14 pN1cM1 patients. BRAF (P=0.019), FGFR2 (P=0.007), FGFR3 (P=0.044) and VEGFC (P=0.042) mRNA expression was significantly lower in pN1cM0/pN1cM1 compared with pN0cM0 patients, whereas PDGFRA (P=0.026) mRNA expression was significantly higher in pN1cM0/pN1cM1 when compared with pN0cM0 patients. Among the 10/32 vandetanib-treated patients, 5 showed partial response (PR), all harbouring the RET918 mutation. mRNA expression of FLT1 (P=0.039), FLT4 (P=0.025) and VEGFB (P=0.042) was significantly higher in therapy responders.

Conclusions

In this study, we identified molecular markers in primary tumour tissue of sporadic MTC associated with the development of metastasis (both lymph node and organ metastasis) as well as response to vandetanib therapy.

Full access

Julia Badziong, Saskia Ting, Sarah Synoracki, Vera Tiedje, Klaudia Brix, Georg Brabant, Lars Christian Moeller, Kurt Werner Schmid, Dagmar Fuhrer and Denise Zwanziger

Objective

Thyroid hormone (TH) transporters are expressed in thyrocytes and most play a role in TH release. We asked whether expression of the monocarboxylate transporter 8 (MCT8) and the L-type amino acid transporters LAT2 and LAT4 is changed with thyrocyte dedifferentiation and in hyperfunctioning thyroid tissues.

Design and methods

Protein expression and localization of transporters was determined by immunohistochemistry in human thyroid specimen including normal thyroid tissue (NT, n = 19), follicular adenoma (FA, n = 44), follicular thyroid carcinoma (FTC, n = 45), papillary thyroid carcinoma (PTC, n = 40), anaplastic thyroid carcinoma (ATC, n = 40) and Graves’ disease (GD, n = 50) by calculating the ‘hybrid’ (H) score. Regulation of transporter expression was investigated in the rat follicular thyroid cell line PCCL3 under basal and thyroid stimulating hormone (TSH) conditions.

Results

MCT8 and LAT4 were localized at the plasma membrane, while LAT2 transporter showed cytoplasmic localization. MCT8 expression was downregulated in benign and malignant thyroid tumours as compared to NT. In contrast, significant upregulation of MCT8, LAT2 and LAT4 was found in GD. Furthermore, a stronger expression of MCT8 was demonstrated in PCCL3 cells after TSH stimulation.

Conclusions

Downregulation of MCT8 in thyroid cancers qualifies MCT8 as a marker of thyroid differentiation. The more variable expression of LATs in distinct thyroid malignancies may be linked with other transporter properties relevant to altered metabolism in cancer cells, i.e. amino acid transport. Consistent upregulation of MCT8 in GD is in line with increased TH release in hyperthyroidism, an assumption supported by our in vitro results showing TSH-dependent upregulation of MCT8.