Search Results

You are looking at 1 - 3 of 3 items for

  • Author: D Clemmons x
Clear All Modify Search
Free access

A Iranmanesh, S South, AY Liem, D Clemmons, MO Thorner, A Weltman and JD Veldhuis

We here investigate the potential rescue of the relative hyposomatotropism of aging and obesity by 3-day pulsatile GHRH infusions (i.v. bolus 0.33 microg/kg every 90 min) in 19 healthy men of varying ages (18 to 66 years) and body compositions (12 to 37% total body fat). Baseline (control) and GHRH-driven pulsatile GH secretion (in randomly ordered sessions) were quantitated by deconvolution analysis of 24-h (10-min sampling) serum GH concentration profiles measured in an ultrasensitive (threshold 0.005 microg/l) chemiluminescence assay. GHRH infusion significantly increased the mean (24-h) serum GH concentration (0.3 +/- 0.1 basal vs 2.4 +/- 0.4 microg/l treatment; P = 0.0001), total daily pulsatile GH production rate (21 +/- 9.5 vs 97 +/- 17 microg/l/day; P = 0.01), GH secretory burst frequency (11 +/- 0.5 vs 17 +/- 0.3 events/day; P = <0.01), and mass of GH released per burst (1.1 +/- 0.4 vs 5.9 1 microg/l; P < 0.01), as well as serum IGF-I (261 +/- 33 vs 436 +/- 37 microg/l; P = 0.005), insulin (45 +/- 13 vs 79 +/- 17 mU/l; P = 0.0002), and IGF binding protein (IGFBP)-3 (3320 +/- 107 vs 4320 +/- 114 microg/l; P = 0.001) concentrations, while decreasing IGFBP-1 levels (16 +/- 1.2 vs 14 +/- 0.09 microg/l; P = 0.02). Serum total testosterone and estradiol concentrations did not change. GHRH treatment also reduced the half-duration of GH secretory bursts, and increased the GH half-life. GHRH-stimulated 24-h serum GH concentrations and the mass of GH secreted per burst were correlated negatively with age (R[value]:P[value] = -0.67:0.002 and -0.58:0.009 respectively), and percentage body fat (R:P = -0.80:0.0001 and -0.65:0.0005 respectively), but positively with serum testosterone concentrations (R:P = +0.55:0.016 and +0.53:0.019 respectively). GHRH-stimulated plasma IGF-I increments correlated negatively with age and body mass index, and positively with serum testosterone, but not with percentage body fat. Cosinor analysis disclosed persistent nyctohemeral rhythmicity of GH secretory burst mass (with significantly increased 24-h amplitude and mesor values) but unchanged acrophase during fixed pulsatile GHRH infusions, which suggests that both GHRH- and non-GHRH-dependent mechanisms can modulate the magnitude (but only non-GHRH mechanisms can modulate the timing) of somatotrope secretory activity differentially over a 24-h period. In summary, diminished GHRH action and/or non-GHRH-dependent mechanisms (e.g. somatostatin excess, putative endogenous growth hormone-releasing peptide deficiency etc.) probably underlie the hyposomatotropism of aging, (relative) obesity, and/or hypoandrogenemia. Preserved or increased tissue IGF-I responses to GHRH-stimulated GH secretion (albeit absolutely reduced, suggesting GHRH insensitivity in obesity) may distinguish the pathophysiology of adiposity-associated hyposomatotropism from that of healthy aging.

Restricted access

J. Ballard, R. Baxter, M. Binoux, D. Clemmons, S. Drop, K. Hall, R. Hintz, M. Rechler, E. Rutanen and J. Schwander

The insulin-like growth factor (IGF) I and II circulate in plasma complexed to carrier on binding proteins.

On the basis of their chromatographically determined molecular size they have been designated 150–200 kD and 30–40 kD IGF binding proteins (BP). In recent years a growing number of proteins with IGF binding characteristics have been isolated from various body fluids, cell lines, and in various species. Provisional terminology based on source, species or molecular size has become increasingly confusing.

Thus far three distinct binding proteins have been fully characterized and their amino acid sequence determined (1–9).

During a workshop in the IGF binding proteins held in Vancouver, June 17–19, 1989, a proposal was put forward to adopt the designation 'IGFBP', with the addition of an arabic numeral and letter prefix to indicate species specificity as outlined in the following table.

It should be stressed that until full amino acid nucleotide sequence data

Open access

D B Allen, P Backeljauw, M Bidlingmaier, B M K Biller, M Boguszewski, P Burman, G Butler, K Chihara, J Christiansen, S Cianfarani, P Clayton, D Clemmons, P Cohen, F Darendeliler, C Deal, D Dunger, E M Erfurth, J S Fuqua, A Grimberg, M Haymond, C Higham, K Ho, A R Hoffman, A Hokken-Koelega, G Johannsson, A Juul, J Kopchick, P Lee, M Pollak, S Radovick, L Robison, R Rosenfeld, R J Ross, L Savendahl, P Saenger, H Toft Sorensen, K Stochholm, C Strasburger, A Swerdlow and M Thorner

Recombinant human GH (rhGH) has been in use for 30 years, and over that time its safety and efficacy in children and adults has been subject to considerable scrutiny. In 2001, a statement from the GH Research Society (GRS) concluded that ‘for approved indications, GH is safe’; however, the statement highlighted a number of areas for on-going surveillance of long-term safety, including cancer risk, impact on glucose homeostasis, and use of high dose pharmacological rhGH treatment. Over the intervening years, there have been a number of publications addressing the safety of rhGH with regard to mortality, cancer and cardiovascular risk, and the need for long-term surveillance of the increasing number of adults who were treated with rhGH in childhood. Against this backdrop of interest in safety, the European Society of Paediatric Endocrinology (ESPE), the GRS, and the Pediatric Endocrine Society (PES) convened a meeting to reappraise the safety of rhGH. The ouput of the meeting is a concise position statement.