OBJECTIVE: To evaluate the molecular mechanisms of the inhibitory effects of amiodarone and its active metabolite, desethylamiodarone (DEA) on thyroid hormone action. MATERIALS AND METHODS: The reporter construct ME-TRE-TK-CAT or TSHbeta-TRE-TK-CAT, containing the nucleotide sequence of the thyroid hormone response element (TRE) of either malic enzyme (ME) or TSHbeta genes, thymidine kinase (TK) and chloramphenicol acetyltransferase (CAT) was transiently transfected with RSV-TRbeta into NIH3T3 cells. Gel mobility shift assay (EMSA) was performed using labelled synthetic oligonucleotides containing the ME-TRE and in vitro translated thyroid hormone receptor (TR)beta. RESULTS: Addition of 1 micromol/l T4 or T3 to the culture medium increased the basal level of ME-TRE-TK-CAT by 4.5- and 12.5-fold respectively. Amiodarone or DEA (1 micromol/l) increased CAT activity by 1.4- and 3.4-fold respectively. Combination of DEA with T4 or T3 increased CAT activity by 9.4- and 18.9-fold respectively. These data suggested that DEA, but not amiodarone, had a synergistic effect with thyroid hormone on ME-TRE, rather than the postulated inhibitory action; we supposed that this was due to overexpression of the transfected TR into the cells. When the amount of RSV-TRbeta was reduced until it was present in a limited amount, allowing competition between thyroid hormone and the drug, addition of 1 micromol/l DEA decreased the T3-dependent expression of the reporter gene by 50%. The inhibitory effect of DEA was partially due to a reduced binding of TR to ME-TRE, as assessed by EMSA. DEA activated the TR-dependent down-regulation by the negative TSH-TRE, although at low level (35% of the down-regulation produced by T3), whereas amiodarone was ineffective. Addition of 1 micromol/l DEA to T3-containing medium reduced the T3-TR-mediated down-regulation of TSH-TRE to 55%. CONCLUSIONS: Our results demonstrate that DEA, but not amiodarone, exerts a direct, although weak, effect on genes that are regulated by thyroid hormone. High concentrations of DEA antagonize the action of T3 at the molecular level, interacting with TR and reducing its binding to TREs. This effect may contribute to the hypothyroid-like effect observed in peripheral tissues of patients receiving amiodarone treatment.
Search Results
You are looking at 1 - 2 of 2 items for
- Author: C Cosci x
- Refine by Access: All content x
F Bogazzi, L Bartalena, S Brogioni, A Burelli, F Raggi, F Ultimieri, C Cosci, M Vitale, G Fenzi, and E Martino
F Bogazzi, F Ultimieri, F Raggi, D Russo, R Vanacore, C Guida, P Viacava, D Cecchetti, G Acerbi, S Brogioni, C Cosci, M Gasperi, L Bartalena, and E Martino
OBJECTIVE: The objective of the study was to evaluate the expression and functional activity of Peroxisome proliferator-activated receptor (PPAR) gamma in pituitary adenomas from 14 consecutive acromegalic patients and to establish its role in apoptosis. SUBJECTS AND METHODS: Fourteen consecutive acromegalic patients were enrolled in the study. Wistar-Furth rats were used for in vivo studies. Expression of PPARgamma was evaluated by RT-PCR and Western blot. Apoptosis and cell cycle were assessed by FACS analysis. The effects of PPARgamma ligands on transcriptional regulation of GH gene were evaluated by RT-PCR and electromobility shift assay. RESULTS: PPARgamma was expressed in all human GH-secreting adenoma (GH-oma), in normal pituitary tissue samples (39+/-24% and 78+/-5% of immunostained nuclei respectively; P<0.0002; ANOVA), and in rat GH-secreting (GH3) cells. A PPRE-containing reporter plasmid transfected into GH3 cells was activated by ciglitazone or rosiglitazone (TZDs), indicating that PPARgamma was functionally active. Treatment of GH3 cells with TZDs increased apoptosis in a dose-dependent manner (P=0.0003) and arrested cell proliferation, reducing the number of cells in the S-phase (P<0.0001 vs untreated cells). TZDs increased the expression of TRAIL, leaving unaffected that of p53 and Bax. TZDs reduced GH concentrations in the culture media from 43.7+/-5.4 ng/ml to 2.1+/-0.3 ng/ml (P<0.0001) and in cell extracts (P<0.004). PPARgamma-RXRalpha heterodimers bound to GH promoter, inhibiting its activity and reducing GH mRNA levels (1.8 x 10(6) vs 5.7 x 10(6) transcripts respectively vs untreated cells; P<0.002). Subcutaneous GH-oma developed in rats injected with GH3 cells; tumor growth increased in placebo-treated rats and to a lesser extent in TZDs-treated animals (24.1+/-2.0 g, and 14.8+/-4.2 g respectively, P<0.03). Serum GH concentrations were lower in TZDs-treated rats than in controls (871+/-67 ng/ml vs 1.309+/-238 ng/ml; P<0.05). CONCLUSIONS: The results of this study indicate that PPARgamma controls GH transcription and secretion as well as apoptosis and growth of GH-oma; thus, TZDs have the potential of a useful tool in the complex therapeutic management of acromegalic patients.