Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Ann J Conway x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Ashraf Aminorroaya, Sharyn Kelleher, Ann J Conway, Lam P Ly, and David J Handelsman

Objective: Androgen deficiency (AD) leads to bone loss and contributes to osteoporotic fractures in men. Although low bone mineral density (BMD) in AD men is improved by testosterone replacement, the responses vary between individuals but the determinants of this variability are not well defined.

Design and methods: Retrospective review of dual energy X-ray absorptiometry (DEXA) of the lumbar spine and proximal femur in men with established AD requiring regular androgen replacement therapy (ART). After a DEXA scan all men were treated with testosterone implants (800 mg, ~6 month intervals). Patients were classified as having a congenital, childhood, or post-pubertal onset, as well as according to the adequacy of treatment prior to their first DEXA scan as untreated, partially treated or well treated.

Results: Men with AD requiring regular ART (n = 169, aged 46.3±1.1 years, range 22–84 years) underwent a DEXA scan prior to being treated with testosterone implants (800 mg, ~6 month intervals). In cross-sectional analysis at the time of the first DEXA scan untreated men (n = 24) had significantly reduced age-adjusted BMD at all four sites (L1–L4, femoral neck, Ward’s triangle and trochanter). Well-treated men (n = 77) had significantly better age-adjusted BMD at all four sites compared with those who were partially treated (n = 66) or untreated (n = 24) with their age-adjusted BMD being normalized. In a longitudinal assessment of men (n = 60) who had two or more serial DEXA scans, at the second DEXA scan after a median of 3 years, men who were previously partially treated (n = 19) or untreated (n = 11) had proportionately greater improvements in BMD, significantly for Ward’s triangle (P = 0.025) and the trochanter (P = 0.044) compared with men (n = 30) previously well treated.

Conclusions: The present study demonstrates a positive relationship between adequacy of testosterone replacement and BMD in men with overt organic AD. Additionally, the BMD of well-treated AD men approximates that of age-matched non-AD controls. The greatest BMD gains are made by those who have been either untreated or partially treated, and optimal treatment over time (median 3 years) normalizes BMD to the level expected for healthy men of the same age.

Free access

David J Handelsman, Reena Desai, Ann J Conway, Nandini Shankara-Narayana, Bronwyn G A Stuckey, Warrick J Inder, Mathis Grossmann, Bu Beng Yeap, David Jesudason, Lam P Ly, Karen Bracken, and Gary Allen Wittert

Context

The time course of male reproductive hormone recovery after stopping injectable testosterone undecanoate (TU) treatment is not known.

Objective

The aim of this study was to investigate the rate, extent, and determinants of reproductive hormone recovery over 12 months after stopping TU injections.

Materials and Methods

Men (n = 303) with glucose intolerance but without pathologic hypogonadism who completed a 2-year placebo (P)-controlled randomized clinical trial of TU treatment were recruited for further 12 months while remaining blinded to treatment. Sex steroids (testosterone (T), dihydrotestosterone, oestradiol, oestrone) by liquid chromatography-mass sprectometry, luteinizing hormone (LH), follicle-stimulating hormone (FSH) and sex hormone-binding globulin (SHBG) by immunoassays and sexual function questionnaires (Psychosexual Diary Questionnaire, International Index of Erectile Function, and short form survey (SF-12)) were measured at entry (3 months after the last injection) and 6, 12, 18, 24, 40, and 52 weeks later.

Results

In the nested cohort of TU-treated men, serum T was initially higher but declined at 12 weeks remaining stable thereafter with serum T and SHBG at 11 and 13%, respectively, lower than P-treated men. Similarly, both questionnaires showed initial carry-over higher scores in T-treated men but after 18 weeks showed no difference between T- and P-treated men. Initially, fully suppressed serum LH and FSH recovered slowly towards the participant’s own pre-treatment baseline over 12 months since the last injection.

Conclusions

After stopping 2 years of 1000 mg injectable TU treatment, full reproductive hormone recovery is slow and progressive over 15 months since the last testosterone injection but may take longer than 12 months to be complete. Persistent proportionate reduction in serum SHBG and T reflects lasting exogenous T effects on hepatic SHBG secretion rather than androgen deficiency.