Search Results

You are looking at 1 - 1 of 1 items for

  • Author: A Hilding x
Clear All Modify Search
Free access

M Saaf, A Hilding, M Thoren, S Troell and K Hall

OBJECTIVES: To study the effect of 12 months of growth hormone (GH) treatment on bone markers, bone mineral density (BMD), lean body mass (LBM) and body fat mass (BF) in postmenopausal osteoporotic women. DESIGN: Sixteen patients were randomised to a double-blind randomised placebo-controlled one-year study with daily s.c. injections of GH or placebo. After the first year 14 patients (8 placebo treated, 6 GH treated) were recruited to GH treatment during the second year. All patients were also supplemented with 0.5 g calcium per oral. METHODS: Bone mineral density and body composition were assessed by dual energy X-ray absorptiometry. Biochemical bone markers were analysed by RIA or HPLC techniques. Diurnal GH profiles were performed with continuous venous blood sampling. RESULTS: Sixteen patients started in the placebo-controlled study. In all, twelve patients completed one year and only four patients completed two years of GH treatment. At baseline 3 patients had serum insulin-like growth factor-I (S-IGF-I) levels below -2 S.D. for age. Maximal diurnal GH levels tended to correlate negatively with S-IGF-I (P=0.076). S-IGF-I was unrelated to BMD. Serum IGF-binding protein-1 (S-IGFBP-1) correlated negatively with femoral neck BMD (r=-0.61, P=0.012). The intended GH dose of 0.05U/kg/day or a maximum of 3U/day s.c. was reduced to 0.024+/-0.004U/kg/day, equal to 0.5-2.7U/day due to frequent side effects, and four patients were excluded. After one year of GH treatment BF increased slightly, LBM and BMD in total body and lumbar spine were unchanged but femoral neck BMD had decreased 3.4+/-1.6% (P<0.05). The mean S-IGF-I increase was 32% (range -38-138%). Mean levels of the bone formation markers S-osteocalcin and S-procollagen type I propeptide increased maximally by 88 and 36% respectively after 9-12 months while the bone resorption markers were unchanged. In the placebo-treated group there were no significant alterations. CONCLUSIONS: The effects on S-IGF-I, bone markers and LBM were small although GH-related side effects were common. The reason for this apparent partial resistance to the anabolic effects of GH is not clear but nutritional deficits may be involved. Assessment of the effects of GH on bone mass and fracture rate requires longer study periods than one year.