Search Results

You are looking at 1 - 10 of 26 items for :

  • "Journal-based learning" x
  • Refine by Access: Content accessible to me x
Clear All
Free access

Jens Bollerslev, Lars Rejnmark, Claudio Marcocci, Dolores M Shoback, Antonio Sitges-Serra, Wim van Biesen, and Olaf M Dekkers

Hypoparathyroidism (HypoPT) is a rare (orphan) endocrine disease with low calcium and inappropriately low (insufficient) circulating parathyroid hormone levels, most often in adults secondary to thyroid surgery. Standard treatment is activated vitamin D analogues and calcium supplementation and not replacement of the lacking hormone, as in other hormonal deficiency states. The purpose of this guideline is to provide clinicians with guidance on the treatment and monitoring of chronic HypoPT in adults who do not have end-stage renal disease. We intend to draft a practical guideline, focusing on operationalized recommendations deemed to be useful in the daily management of patients. This guideline was developed and solely sponsored by The European Society of Endocrinology, supported by CBO (Dutch Institute for Health Care Improvement) and based on the Grading of Recommendations Assessment, Development and Evaluation (GRADE) principles as a methodological base. The clinical question on which the systematic literature search was based and for which available evidence was synthesized was: what is the best treatment for adult patients with chronic HypoPT? This systematic search found 1100 articles, which was reduced to 312 based on title and abstract. The working group assessed these for eligibility in more detail, and 32 full-text articles were assessed. For the final recommendations, other literature was also taken into account. Little evidence is available on how best to treat HypoPT. Data on quality of life and the risk of complications have just started to emerge, and clinical trials on how to optimize therapy are essentially non-existent. Most studies are of limited sample size, hampering firm conclusions. No studies are available relating target calcium levels with clinically relevant endpoints. Hence it is not possible to formulate recommendations based on strict evidence. This guideline is therefore mainly based on how patients are managed in clinical practice, as reported in small case series and based on the experiences of the authors.

Free access

Garcilaso Riesco-Eizaguirre and Pilar Santisteban

Thyroid cancer is the most common endocrine malignancy giving rise to one of the most indolent solid cancers, but also one of the most lethal. In recent years, systematic studies of the cancer genome, most importantly those derived from The Cancer Genome Altas (TCGA), have catalogued aberrations in the DNA, chromatin, and RNA of the genomes of thousands of tumors relative to matched normal cellular genomes and have analyzed their epigenetic and protein consequences. Cancer genomics is therefore providing new information on cancer development and behavior, as well as new insights into genetic alterations and molecular pathways. From this genomic perspective, we will review the main advances concerning some essential aspects of the molecular pathogenesis of thyroid cancer such as mutational mechanisms, new cancer genes implicated in tumor initiation and progression, the role of non-coding RNA, and the advent of new susceptibility genes in thyroid cancer predisposition. This look across these genomic and cellular alterations results in the reshaping of the multistep development of thyroid tumors and offers new tools and opportunities for further research and clinical development of novel treatment strategies.

Free access

Edoarda V A Albuquerque, Renata C Scalco, and Alexander A L Jorge

Tall stature is defined as a height of more than 2 standard deviations (s.d.) above average for same sex and age. Tall individuals are usually referred to endocrinologists so that hormonal disorders leading to abnormal growth are excluded. However, the majority of these patients have familial tall stature or constitutional advance of growth (generally associated with obesity), both of which are diagnoses of exclusion. It is necessary to have familiarity with a large number of rarer overgrowth syndromes, especially because some of them may have severe complications such as aortic aneurysm, thromboembolism and tumor predisposition and demand-specific follow-up approaches. Additionally, endocrine disorders associated with tall stature have specific treatments and for this reason their recognition is mandatory. With this review, we intend to provide an up-to-date summary of the genetic conditions associated with overgrowth to emphasize a practical diagnostic approach of patients with tall stature and to discuss the limitations of current growth interruption treatment options.

Free access

Faryal Mirza and Ernesto Canalis

Osteoporosis is a skeletal disorder characterized by decreased mass and compromised bone strength predisposing to an increased risk of fractures. Although idiopathic osteoporosis is the most common form of osteoporosis, secondary factors may contribute to the bone loss and increased fracture risk in patients presenting with fragility fractures or osteoporosis. Several medical conditions and medications significantly increase the risk for bone loss and skeletal fragility. This review focuses on some of the common causes of osteoporosis, addressing the underlying mechanisms, diagnostic approach and treatment of low bone mass in the presence of these conditions.

Free access

Jonàs Juan-Mateu, Olatz Villate, and Décio L Eizirik

Type 1 diabetes (T1D) is a chronic autoimmune disease in which pancreatic β cells are killed by infiltrating immune cells and by cytokines released by these cells. This takes place in the context of a dysregulated dialogue between invading immune cells and target β cells, but the intracellular signals that decide β cell fate remain to be clarified. Alternative splicing (AS) is a complex post-transcriptional regulatory mechanism affecting gene expression. It regulates the inclusion/exclusion of exons into mature mRNAs, allowing individual genes to produce multiple protein isoforms that expand the proteome diversity. Functionally related transcript populations are co-ordinately spliced by master splicing factors, defining regulatory networks that allow cells to rapidly adapt their transcriptome in response to intra and extracellular cues. There is a growing interest in the role of AS in autoimmune diseases, but little is known regarding its role in T1D. In this review, we discuss recent findings suggesting that splicing events occurring in both immune and pancreatic β cells contribute to the pathogenesis of T1D. Splicing switches in T cells and in lymph node stromal cells are involved in the modulation of the immune response against β cells, while β cells exposed to pro-inflammatory cytokines activate complex splicing networks that modulate β cell viability, expression of neoantigens and susceptibility to immune-induced stress. Unveiling the role of AS in β cell functional loss and death will increase our understanding of T1D pathogenesis and may open new avenues for disease prevention and therapy.

Free access

Laurence Amar, Aurélien Lorthioir, Michel Azizi, and Pierre-Francois Plouin

Mineralocorticoid receptor antagonists have been used in patients with aldosterone-producing adenomas (APAs) as a test designed to predict the blood pressure (BP) outcome of surgery. They are commonly used in patients undergoing adrenalectomy to reduce BP and increase plasma potassium levels during the preoperative period. A small number of studies have compared the effects of surgery and mineralocorticoid antagonists either on BP, on serum potassium levels, or on the incidence of cardiovascular and renal outcomes in patients with primary aldosteronism with or without an APA; these studies found no difference between the two therapeutic options. Mineralocorticoid receptor antagonists can be used as a maintenance treatment for patients with APAs, who are judged to be poor operative risks or who do not want to undergo surgery.

Open access

J S Carroll

Most breast cancers are driven by a transcription factor called oestrogen receptor (ER). Understanding the mechanisms of ER activity in breast cancer has been a major research interest and recent genomic advances have revealed extraordinary insights into how ER mediates gene transcription and what occurs during endocrine resistance. This review discusses our current understanding on ER activity, with an emphasis on several evolving, but important areas of ER biology.

Free access

Vladimir Vasilev, Liliya Rostomyan, Adrian F Daly, Iulia Potorac, Sabina Zacharieva, Jean-François Bonneville, and Albert Beckers

Pituitary incidentalomas are a by-product of modern imaging technology. The term ‘incidentaloma’ is neither a distinct diagnosis nor a pathological entity. Rather, it is a collective designation for different entities that are discovered fortuitously, requiring a working diagnosis based on the input of the radiologist, endocrinologist and often a neurosurgeon. In addition to pathological conditions affecting the pituitary gland, a thorough knowledge of the radiological characteristics of normal variants and technical artifacts is required to arrive at an accurate differential diagnosis. After careful radiological and hormonal evaluation, the vast majority of pituitary incidentalomas turn out to be non-functioning pituitary microadenomas and Rathke’s cleft cysts (RCCs). Based on the low growth potential of non-functioning pituitary microadenomas and RCCs, periodic MRI surveillance is currently considered the optimal management strategy. Stricter follow-up is required for macroadenomas, as increases in size occur more frequently.

Free access

Raquel Barrio

Cystic fibrosis (CF) is a recessive genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR). CFTR is primarily present in epithelial cells of the airways, intestine and in cells with exocrine and endocrine functions. Mutations in the gene encoding the channel protein complex (CFTR) cause alterations in the ionic composition of secretions from the lung, gastrointestinal tract, liver, and also the pancreas. CF-related diabetes (CFRD), the most common complication of CF, has a major detrimental impact on pulmonary function, nutrition and survival. Glucose derangements in CF seem to start from early infancy and, even when the pathophysiology is multifactorial, insulin insufficiency is clearly a major component. Consistently, recent evidence has confirmed that CFTR is an important regulator of insulin secretion by islet β-cells. In addition, several other mechanisms were also recognized from cellular and animals models also contributing to either β-cell mass reduction or β-cell malfunction. Understanding such mechanisms is crucial for the development of the so-called ‘transformational’ therapies in CF, including the preservation of insulin secretion. Innovative therapeutic approaches aim to modify specific CFTR mutant proteins or positively modulate their function. CFTR modulators have recently shown in vitro capacity to enhance insulin secretion and thereby potential clinical utility in CFDR, including synergistic effects between corrector and potentiator drugs. The introduction of incretins and the optimization of exocrine pancreatic replacement complete the number of therapeutic options of CFRD besides early diagnosis and implementation of insulin therapy. This review focuses on the recently identified pathogenic mechanisms leading to CFRD relevant for the development of novel pharmacological avenues in CFRD therapy.

Free access

Lucía Sanz-Salvador, Miguel Ángel García-Pérez, Juan J Tarín, and Antonio Cano

Changes in bone density and bone markers suggest that pregnancy is associated with deterioration of bone mass in the mother. The metabolism of calcium resets to allow for the needs imposed by the building of the fetal skeleton. The fetus contributes to the process through the output of regulators from the placenta. Understanding of the whole process is limited, but some changes are unambiguous. There is an increase in the circulating levels of vitamin D, but its functional impact is unclear. Fetal parathyroid hormone (PTH) and PTH-related peptide (PTHrp) play an indirect role through support of a calcium gradient that creates hypercalcemia in the fetus. Placental GH, which increases up to the end of pregnancy, may exert some anabolic effects, either directly or through the regulation of the IGF1 production. Other key regulators of bone metabolism, such as estrogens or prolactin, are elevated during pregnancy, but their role is uncertain. An increase in the ratio of receptor activator of nuclear factor kappa B ligand (RANKL) to osteoprotegerin (OPG) acts as an additional pro-resorbing factor in bone. The increase in bone resorption may lead to osteoporosis and fragility fracture, which have been diagnosed, although rarely. However, the condition is transitory as long-term studies do not link the number of pregnancies with osteoporosis. Prevention is limited by the lack of identifiable risk factors. When fractures are diagnosed, rest, analgesics, or, when indicated, orthopedic intervention have demonstrated efficacy. Systemic treatment with anti-osteoporotic drugs is effective, but the potential harm to the fetus imposes caution in their use.