Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Liva L. Krogh x
  • User-accessible content x
Clear All Modify Search
Restricted access

Signe Stensen, Lærke S Gasbjerg, Liva L Krogh, Kirsa Skov-Jeppesen, Alexander H Sparre-Ulrich, Mette H Jensen, Flemming Dela, Bolette Hartmann, Tina Vilsbøll, Jens J Holst, Mette M Rosenkilde, Mikkel B Christensen, and Filip K Knop

Objective

The insulinotropic effect of exogenous, intravenously infused glucose-dependent insulinotropic polypeptide (GIP) is impaired in patients with type 2 diabetes. We evaluated the effects of endogenous GIP in relation to glucose and bone metabolism in patients with type 2 diabetes using a selective GIP receptor antagonist and hypothesized that the effects of endogenous GIP were preserved.

Design

A randomized, double-blinded, placebo-controlled, crossover study.

Methods

Ten patients with overweight/obesity and type 2 diabetes (mean±s.d.; HbA1c 52 ± 11 mmol/mol; BMI 32.5 ± 4.8 kg/m2) were included. We infused a selective GIP receptor antagonist, GIP(3-30)NH2 (1200 pmol/kg/min), or placebo (saline) during two separate, 230-min, standardized, liquid mixed meal tests followed by a meal ad libitum. Subcutaneous adipose tissue biopsies were analyzed.

Results

Compared with placebo, GIP(3-30)NH2 reduced postprandial insulin secretion (Δbaseline-subtracted area under the curve (bsAUC)C-peptide% ± s.e.m.; −14 ± 6%, P = 0.021) and peak glucagon (Δ% ± s.e.m.; −11 ± 6%, P = 0.046) but had no effect on plasma glucose (P = 0.692). Suppression of bone resorption (assessed by circulating carboxy-terminal collagen crosslinks (CTX)) was impaired during GIP(3-30)NH2 infusion compared with placebo (ΔbsAUCCTX; ±s.e.m.; −4.9 ± 2 ng/mL × min, P = 0.005) corresponding to a ~50% reduction. Compared with placebo, GIP(3-30)NH2 did not affect plasma lipids, meal consumption ad libitum or adipose tissue triglyceride content.

Conclusions

Using a selective GIP receptor antagonist during a meal, we show that endogenous GIP increases postprandial insulin secretion with little effect on postprandial glycaemia but is important for postprandial bone homeostasis in patients with type 2 diabetes.