Search Results

You are looking at 51 - 56 of 56 items for

  • Abstract: adolescen* x
  • Abstract: boy* x
  • Abstract: child* x
  • Abstract: girl* x
  • Abstract: neonat* x
  • Abstract: paediatric x
  • Refine by Access: Open Access content only x
Clear All Modify Search
Open access

Li F Chan, Teng-Teng Chung, Ahmed F Massoud, Louise A Metherell, and Adrian J L Clark

Context

Familial glucocorticoid deficiency (FGD) is a rare autosomal recessive disease, characterised by isolated glucocorticoid deficiency in the absence of mineralocorticoid deficiency. Inactivating mutations in the ACTH receptor (melanocortin-2-receptor, MC2R) are well described and account for ∼25% of cases. By contrast, activating MC2R mutations are extremely rare.

Patient

We report a child of Saudi Arabian origin who was diagnosed with FGD following hypoglycaemic episodes that resulted in spastic quadriplegia.

Methods and results

MC2R gene analysis revealed an unusual combination of two homozygous missense mutations, consisting of the novel mutation Y129C and the previously described F278C activating mutation. Parents were heterozygous at both of these sites. In vitro analysis of the Y129C mutation using a fluorescent cell surface assay showed that this mutant was unable to reach the cell surface in CHO cells stably transfected with MC2R accessory protein (MRAP), despite the demonstration of an interaction with MRAP by co-immunoprecipitation. The double mutant Y129C-F278C also failed to traffic to the cell surface.

Conclusion

The tyrosine residue at position 129 in the second intracellular loop is critical in MC2R folding and/or trafficking to the cell surface. Furthermore, the absence of cell surface expression of MC2R would account for the lack of activation of the receptor due to the F278C mutation located at the C-terminal tail. We provide a novel molecular explanation for a child with two opposing mutations causing severe FGD.

Open access

M E Rodie, M A V Mudaliar, P Herzyk, M McMillan, M Boroujerdi, S Chudleigh, E S Tobias, and S F Ahmed

Background

It is unclear whether a short-term change in circulating androgens is associated with changes in the transcriptome of the peripheral blood mononuclear cells (PBMC).

Aims and methods

To explore the effect of hCG stimulation on the PBMC transcriptome, 12 boys with a median age (range) of 0.7 years (0.3, 11.2) who received intramuscular hCG 1500u on 3 consecutive days as part of their investigations underwent transcriptomic array analysis on RNA extracted from peripheral blood mononuclear cells before and after hCG stimulation.

Results

Median pre- and post-hCG testosterone for the overall group was 0.7 nmol/L (<0.5, 6) and 7.9 nmol/L (<0.5, 31.5), respectively. Of the 12 boys, 3 (25%) did not respond to hCG stimulation with a pre and post median serum testosterone of <0.5 nmol/L and <0.5 nmol/L, respectively. When corrected for gene expression changes in the non-responders to exclude hCG effects, all 9 of the hCG responders consistently demonstrated a 20% or greater increase in the expression of piR-37153 and piR-39248, non-coding PIWI-interacting RNAs (piRNAs). In addition, of the 9 responders, 8, 6 and 4 demonstrated a 30, 40 and 50% rise, respectively, in a total of 2 further piRNAs. In addition, 3 of the responders showed a 50% or greater rise in the expression of another small RNA, SNORD5. On comparing fold-change in serum testosterone with fold-change in the above transcripts, a positive correlation was detected for SNORD5 (P = 0.01).

Conclusions

The identification of a dynamic and androgen-responsive PBMC transcriptome extends the potential value of the hCG test for the assessment of androgen sufficiency.

Open access

Maria Thunander, Carina Törn, Christer Petersson, Birger Ossiansson, Jan Fornander, and Mona Landin-Olsson

Objective

C-peptide is a main outcome measure in treatment trials of diabetes. C-peptide also has a role in the classification of diabetes, which is often difficult in adults and this is also increasingly recognised in adolescents and elders.

Aim

We aimed to describe the levels of C-peptide in relation to age and body mass index (BMI) in a large population-based cohort of adults with newly diagnosed diabetes and compare the capabilities of C-peptide, age and BMI to discriminate between autoimmune and non-autoimmune diabetes.

Subjects and methods

Blood samples from 1180 patients were analysed regarding islet cell antibody, glutamic acid decarboxylase antibody and fasting C-peptide (FCP). Receiver operating characteristics (ROC) curves were analysed to check the ability of age, BMI and C-peptide to discriminate between autoantibody-positive (Ab+) and -negative (Ab) diabetes.

Results

Mean FCP was 0.73±0.5 (range 0.13–1.80) nmol/l in the Ab+ and 1.42±0.9 (range 0.13–8.30) nmol/l in the Ab. FCP was 0.02 nmol/l higher per year increase in age at diagnosis of diabetes. Mean BMI was 26.0±4.8 (range 18.0–39.0) kg/m2 in the Ab+ and 28.9±5.3 (range 15.5–62.6) kg/m2 in the Ab. FCP increased with age also within each BMI group. The highest area under the curve (AUC) in the ROC analysis was found for C-peptide, followed by age and BMI (0.78, 0.68 and 0.66 respectively).

Conclusions

At diagnosis of diabetes, C-peptide was superior to age and BMI in discriminating between autoimmune and non-autoimmune diabetes. C-peptide increased significantly with BMI and age, latter also within each BMI group. Most of the adults had normal or high levels of C-peptide at presentation of diabetes among the autoimmune patients.

Open access

Sally Tantawy, Lin Lin, Ilker Akkurt, Guntram Borck, Dietrich Klingmüller, Berthold P Hauffa, Heiko Krude, Heike Biebermann, John C Achermann, and Birgit Köhler

Background

Steroidogenic factor 1 (SF-1, NR5A1) is a key transcriptional regulator of many genes involved in the hypothalamic–pituitary–gonadal axis and mutations in NR5A1 can result in 46,XY disorders of sex development (DSD). Patients with this condition typically present with ambiguous genitalia, partial gonadal dysgenesis, and absent/rudimentary Müllerian structures. In these cases, testosterone is usually low in early infancy, indicating significantly impaired androgen synthesis. Further, Sertoli cell dysfunction is seen (low inhibin B, anti-Müllerian hormone). However, gonadal function at puberty in patients with NR5A1 mutations is unknown.

Subjects and methods

Clinical assessment, endocrine evaluation, and genetic analysis were performed in one female and one male with 46,XY DSD who showed spontaneous virilization during puberty. The female patient presented at adolescence with clitoral hypertrophy, whereas the male patient presented at birth with severe hypospadias and entered puberty spontaneously. Molecular analysis of NR5A1 was performed followed by in vitro functional analysis of the two novel mutations detected.

Results

Testosterone levels were normal during puberty in both patients. Analysis of NR5A1 revealed two novel heterozygous missense mutations in the ligand-binding domain of SF-1 (patient 1: p.L376F; patient 2: p.G328V). The mutant proteins showed reduced transactivation of the CYP11A promoter in vitro.

Conclusion

Patients with 46,XY DSD and NR5A1 mutations can produce sufficient testosterone for spontaneous virilization during puberty. Phenotypic females (46,XY) with NR5A1 mutations can present with clitoromegaly at puberty, a phenotype similar to other partial defects of androgen synthesis or action. Testosterone production in 46,XY males with NR5A1 mutations can be sufficient for virilization at puberty. As progressive gonadal dysgenesis is likely, gonadal function should be monitored in adolescence and adulthood, and early sperm cryopreservation considered in male patients if possible.

Open access

Birgit Köhler, Lin Lin, Inas Mazen, Cigdem Cetindag, Heike Biebermann, Ilker Akkurt, Rainer Rossi, Olaf Hiort, Annette Grüters, and John C Achermann

Objective

Hypospadias is a frequent congenital anomaly but in most cases an underlying cause is not found. Steroidogenic factor 1 (SF-1, NR5A1, Ad4BP) is a key regulator of human sex development and an increasing number of SF-1 (NR5A1) mutations are reported in 46,XY disorders of sex development (DSD). We hypothesized that NR5A1 mutations could be identified in boys with hypospadias.

Design and methods

Mutational analysis of NR5A1 in 60 individuals with varying degrees of hypospadias from the German DSD network.

Results

Heterozygous NR5A1 mutations were found in three out of 60 cases. These three individuals represented the most severe end of the spectrum studied as they presented with penoscrotal hypospadias, variable androgenization of the phallus and undescended testes (three out of 20 cases (15%) with this phenotype). Testosterone was low in all three patients and inhibin B/anti-Müllerian hormone (AMH) were low in two patients. Two patients had a clear male gender assignment. Gender re-assignment to male occurred in the third case. Two patients harbored heterozygous nonsense mutations (p.Q107X/WT, p.E11X/WT). One patient had a heterozygous splice site mutation in intron 2 (c.103-3A/WT) predicted to disrupt the main DNA-binding motif. Functional studies of the nonsense mutants showed impaired transcriptional activation of an SF-1-responsive promoter (Cyp11a). To date, adrenal insufficiency has not occurred in any of the patients.

Conclusions

SF-1 (NR5A1) mutations should be considered in 46,XY individuals with severe (penoscrotal) hypospadias, especially if undescended testes, low testosterone, or low inhibin B/AMH levels are present. SF-1 mutations in milder forms of idiopathic hypospadias are unlikely to be common.

Open access

Daniele Cassatella, Sasha R Howard, James S Acierno, Cheng Xu, Georgios E Papadakis, Federico A Santoni, Andrew A Dwyer, Sara Santini, Gerasimos P Sykiotis, Caroline Chambion, Jenny Meylan, Laura Marino, Lucie Favre, Jiankang Li, Xuanzhu Liu, Jianguo Zhang, Pierre-Marc Bouloux, Christian De Geyter, Anne De Paepe, Waljit S Dhillo, Jean-Marc Ferrara, Michael Hauschild, Mariarosaria Lang-Muritano, Johannes R Lemke, Christa Flück, Attila Nemeth, Franziska Phan-Hug, Duarte Pignatelli, Vera Popovic, Sandra Pekic, Richard Quinton, Gabor Szinnai, Dagmar l’Allemand, Daniel Konrad, Saba Sharif, Özlem Turhan Iyidir, Brian J Stevenson, Huanming Yang, Leo Dunkel, and Nelly Pitteloud

Objective

Congenital hypogonadotropic hypogonadism (CHH) and constitutional delay of growth and puberty (CDGP) represent rare and common forms of GnRH deficiency, respectively. Both CDGP and CHH present with delayed puberty, and the distinction between these two entities during early adolescence is challenging. More than 30 genes have been implicated in CHH, while the genetic basis of CDGP is poorly understood.

Design

We characterized and compared the genetic architectures of CHH and CDGP, to test the hypothesis of a shared genetic basis between these disorders.

Methods

Exome sequencing data were used to identify rare variants in known genes in CHH (n = 116), CDGP (n = 72) and control cohorts (n = 36 874 ExAC and n = 405 CoLaus).

Results

Mutations in at least one CHH gene were found in 51% of CHH probands, which is significantly higher than in CDGP (7%, P = 7.6 × 10−11) or controls (18%, P = 5.5 × 10−12). Similarly, oligogenicity (defined as mutations in more than one gene) was common in CHH patients (15%) relative to CDGP (1.4%, P = 0.002) and controls (2%, P = 6.4 × 10−7).

Conclusions

Our data suggest that CDGP and CHH have distinct genetic profiles, and this finding may facilitate the differential diagnosis in patients presenting with delayed puberty.