EFFECTS OF METHYLMERCAPTOIMIDAZOLE (MMI), PROPYLTHIOURACIL (PTU), POTASSIUM PERCHLORATE (KClO₄) AND POTASSIUM IODIDE (KI) ON THE SERUM CONCENTRATIONS OF THYROTROPHIN (TSH) AND THYROID HORMONES IN THE RAT

By

P. T. Männistö¹, T. Ranta² and J. Leppäläuto³

ABSTRACT

Male Sprague-Dawley rats were given graded doses of methylmercaptoimidazole (MMI), propylthiouracil (PTU), KClO₄ or KI in drinking water for 4 days, or the lowest effective dose of each drug for various times. The rats were sacrificed at 1–2 p.m. and serum T₃, T₄ and TSH concentrations were measured by radioimmunoassays. It was found that administration of 5 mg/l of MMI, 10 mg/l of PTU and 100 mg/l of KClO₄ for 4–14 days induced a transient rise in serum TSH and a fall in serum T₃ or T₄ or in both. The effects of KI were not consistent. In another series of experiments, PTU (10 mg/l) was given in drinking water for 4 days, and then graded doses of T₃ or T₄ were given iv, or 100 ng of TRH was injected into a tail vein, or the animals were exposed to 4°C for 30 min. The initial high TSH levels were further increased by TRH and cold and decreased by T₃ and T₄. The PTU-treated animals had goitres after 4 days. We infer that low doses, that is to say 10–100 times lower than previously described, of antithyroid drugs induce a hypothyroidism characterized by an increased TSH level and a decreased serum T₃ or T₄ level or both. A 4 days' treatment with PTU (10 mg/l in tap water) is a suitable tool for studying the effect of various conditions on TSH secretion.
The effects of various antithyroid drugs are well documented at the level of the thyroid gland (Stanley & Astwood 1947; Richards & Ingbar 1959; Iino et al. 1961; Hershman & Van Middlesworth 1962; Nagataki & Ingbar 1964; Wolff 1964). However, their effects on the serum concentrations of immunoassayable T₃, T₄ and TSH have been less widely studied. In most of the previous studies only one, and evidently a high concentration of an antithyroid drug has been used, resulting in at least temporarily increased secretion of TSH (Bakke & Lawrence 1964; Wilber & Utiger 1967; Liewendahl et al. 1972; Griessen & Lemarchand-Béraud 1973; Saberi et al. 1975).

The effects of suprapituitary factors on the regulation of TSH are usually studied in situations where the secretion of TSH is stimulated. We have previously stimulated TSH secretion in rats by cold-exposure (Leppäluoto et al. 1974; Tuomisto et al. 1975; Ranta et al. 1977) and found that it is possible to modify the stimulated TSH secretion by various drugs influencing central neuro-transmission (Tuomisto et al. 1975; Ranta et al. 1977; Männistö et al. 1979). In other studies TSH secretion was stimulated by thyroidectomy but the very high TSH levels were not changed by drugs (Mueller et al. 1976) or by cold-exposure (Männistö, unpubl. results).

To find another reliable system for the stimulation of TSH secretion and to elucidate the acute effects of various antithyroid drugs, we measured serum concentrations of T₃, T₄ and TSH by specific radioimmunoassays in a series of experiments where graded doses of four antithyroid drugs were given to the rats in tap water for 4 days. In the further studies a low effective dose of each drug was given for varied periods of time. We were able to show that very low concentrations of antithyroid drugs effectively stimulated TSH secretion. The elevated TSH levels responded to exposure to cold, to thyroid hormones and to TSH-releasing hormone.

MATERIAL AND METHODS

Animals

Male outbred Sprague-Dawley rats weighing 180–220 g at the beginning of the experiments were used. They were kept 2–5 animals per cage and fed tap water and pellets (iodine concentration 0.5–1 mg/kg) ad libitum. The animal room was artificially illuminated from 7 a.m. to 7 p.m. and kept at 20–22°C. The animals were decapitated between 1 p.m. and 3 p.m.

Experimental designs

1. Studies with various doses of propylthiouracil (PTU), methylmercaptoimidazole (MMI), KCIO₄ and KI. – In the first series of experiments graded doses of PTU (0, 1, 5, 10, 25 and 50 mg/l), MMI (0, 1, 5, 10 and 25 mg/l), KCIO₄ (0, 10, 50, 100 and 500 mg/l) and KI (0, 10, 100 and 1000 mg/l) in tap water were given to groups of 5–6
rats for 4 days, beginning at 1 p.m. on the first day. The consumption of drinking fluid was similar in all the groups. The daily dose of each drug at 10 mg/l level varied from 0.3 to 0.5 mg. All animals gained weight similarly and were apparently healthy. The animals were decapitated on the 5th day at 1–3 p.m. and the whole trunk blood was collected for the measurement of serum T₃, T₄ and TSH concentrations (cf. below).

In the second series of experiments PTU (10 mg/l), MMI (5 mg/l), KClO₄ (100 mg/l) and KI (100 mg/l) were given in tap water as above and the animals (n = 5–7 in each group) were decapitated on the 2nd, 4th, 6th, 9th and 14th day at 1–3 p.m. One or two control rats were killed at each point of time (total 6–8 controls per each drug).

In the third experiment PTU (10 mg/l) was given in drinking water as above and on the 4th (n = 6) and 10th day (n = 6) the animals were decapitated. The control rats (n = 6) were killed on the 10th day. The thyroid glands and adenohypophyses were excised and weighed.

2. Effects of cold, TRH and thyroid hormone treatment on TSH concentration in the 4-day PTU treated rats. — In the first series of experiments the reproducibility of the PTU-induced TSH response was studied. PTU (10 mg/l) was given in drinking water for 3 or 4 days and then the animals were decapitated for the measurement of serum TSH. The experiments (5–7 rats in each) were repeated 5 times and the coefficients of variation in the final serum TSH concentrations were calculated.

In the second experiment PTU (10 mg/l) was given in drinking water as above. On the 4th day 10 rats were transferred to a room with a temperature of 4°C for 30 min and then sacrificed for measurement of serum TSH. Other 10 rats were given 100 ng of TRH into a tail vein and the animals were decapitated 10 min later. The control animals (n = 10) received saline iv and were decapitated at the same time. The fourth group of rats (n = 10) received water instead of PTU.

In the third experiment 60 rats received PTU (10 mg/l) as above for 4 days. Then graded doses of T₃ (0, 1.25, 2.5, 5, 12.5 or 125 μg/kg) or T₄ (5, 25, 37.5, 50, 100 or 375 μg/kg) were injected into the tail vein. The rats were decapitated 2 h later for measurement of serum TSH. This time interval has been found suitable in an earlier study in rats (Wilber & Utiger 1967).

Hormones and drugs

Thyroxine, triiodothyronine, propylthiouracil, methylmercaptoimidazole, KClO₄ and KI were purchased from Sigma (St. Louis). TSH-releasing hormone was obtained from Calbiochem (San Diego).

Radioimmunoassays of serum T₃, T₄ and TSH

T₃ and T₄ antisera were purchased from Farmos (Turku). T₃ antiserum had a cross-reactivity of <0.01 % against mono- or diiodotyrosine and 0.15 % against T₄. T₄ antiserum had a cross-reactivity of <0.01 % against iodotyrosines and 0.55 % against T₃. ¹²⁵I-labelled T₃ and T₄ were purchased from Amersham, England. A 100 μl serum sample was incubated overnight with antiserum and tracer at 4°C in a buffer containing anilinonaphtalen-sulphonate. The immunocomplex was precipitated with poly-ethyleneglycol (final concentration 12.5 % w/v). Serum TSH was measured with a rat TSH kit obtained as a gift from NIAMDD. A rat TSH preparation RP-1 was used as a standard (Ranta 1975).
RESULTS

Effects of graded doses of antithyroid drugs, administered for 4 days, on serum T_3, T_4 and TSH concentrations

PTU. – At the PTU level of 1 mg/l there were no significant changes in serum hormone levels in 4 days. At 5 mg/l serum TSH rose from 580 to 1730 ng/ml ($P < 0.05$) and remained at about that level at higher doses. Statistically significant falls in serum T_3 and T_4 occurred at 10 mg/l or at higher doses (Fig. 1).

MMI. – MMI did not affect serum hormone concentrations at 1 mg/l dose level in 4 days. At 5 mg/l serum TSH increased from 640 to 2180 ng/ml ($P < 0.01$) whereas serum T_3 and T_4 were not significantly affected. At 10 and 25 mg/l level of MMI, serum TSH was still high but declining. Serum T_4 concentrations decreased from 52 to 37 nmol/l at 10 mg/l ($P < 0.05$) and to 32 mmol/l at 25 mg/l ($P < 0.01$). The serum T_3 concentrations remained unchanged at all MMI dose levels (Fig. 2).

![Graph](image-url)

Fig. 1.

Serum T_3 (▲—▲; 10$^{-1}$ nmol/l), T_4 (■—■; nmol/l) and TSH (●—●; 102 ng/ml) concentrations as a function of the PTU dose (mg/l in drinking water; log scale) in the rat. Mean ± SEM. n = 5–6. Statistics: \times $P < 0.05$, $\times\times$ $P < 0.01$ vs. the water controls.
Serum T_3, T_4 and TSH concentrations as a function of the dose of MMI (mg/l in drinking water; log scale). For further information, see Fig. 1.

Serum T_3, T_4 and TSH concentrations as a function of the KClO$_4$ dose (mg/l in drinking water; log scale). For further information, see Fig. 1.
Table 1.
Serum T₄ (nmol/l), T₃ (nmol/l) and TSH (ng/ml) concentrations as a function of time during PTU (10 mg/l), MMI (5 mg/l), KClO₄ (100 mg/l) and KI (100 mg/l) treatment. The drugs were given in tap water.

<table>
<thead>
<tr>
<th>Duration of the treatment, days</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>9</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₄, nmol/l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTU</td>
<td>50.0 ± 4.0</td>
<td>54.3 ± 5.5</td>
<td>38.0 ± 7.0*</td>
<td>27.4 ± 4.1**</td>
<td>12.1 ± 1.6**</td>
<td>34.8 ± 4.3*</td>
</tr>
<tr>
<td>MMI</td>
<td>50.8 ± 3.1</td>
<td>49.0 ± 3.2</td>
<td>45.4 ± 2.8</td>
<td>36.8 ± 4.1*</td>
<td>–</td>
<td>34.7 ± 1.2**</td>
</tr>
<tr>
<td>KClO₄</td>
<td>52.1 ± 6.8</td>
<td>40.8 ± 2.6</td>
<td>47.5 ± 2.7</td>
<td>45.4 ± 2.5</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>KI</td>
<td>69.4 ± 3.0</td>
<td>45.1 ± 3.2</td>
<td>63.5 ± 2.9</td>
<td>74.8 ± 0.9*</td>
<td>61.8 ± 4.3</td>
<td>82.7 ± 5.2**</td>
</tr>
<tr>
<td>T₃, nmol/l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTU</td>
<td>1.8 ± 0.3</td>
<td>0.5 ± 0.07**</td>
<td>0.7 ± 0.14*</td>
<td>0.6 ± 0.08**</td>
<td>0.6 ± 0.13**</td>
<td>0.8 ± 0.17</td>
</tr>
<tr>
<td>MMI</td>
<td>2.0 ± 0.12</td>
<td>2.4 ± 0.12</td>
<td>2.1 ± 0.21</td>
<td>1.9 ± 0.15</td>
<td>–</td>
<td>2.3 ± 0.21</td>
</tr>
<tr>
<td>KClO₄</td>
<td>2.0 ± 0.10</td>
<td>2.1 ± 0.16</td>
<td>1.6 ± 0.11</td>
<td>1.6 ± 0.06</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>KI</td>
<td>2.8 ± 0.22</td>
<td>1.8 ± 0.07*</td>
<td>2.5 ± 0.16</td>
<td>2.9 ± 0.10</td>
<td>2.2 ± 0.07</td>
<td>2.7 ± 0.18</td>
</tr>
<tr>
<td>TSH, ng/ml</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTU</td>
<td>520 ± 60</td>
<td>980 ± 100*</td>
<td>1400 ± 75°</td>
<td>2450 ± 350**</td>
<td>4550 ± 410**</td>
<td>1500 ± 350</td>
</tr>
<tr>
<td>MMI</td>
<td>505 ± 130</td>
<td>750 ± 20</td>
<td>2300 ± 250**</td>
<td>990 ± 170°</td>
<td>–</td>
<td>800 ± 250</td>
</tr>
<tr>
<td>KClO₄</td>
<td>610 ± 110</td>
<td>720 ± 160</td>
<td>1120 ± 100°</td>
<td>1095 ± 140°</td>
<td>–</td>
<td>1200 ± 150°</td>
</tr>
<tr>
<td>KI</td>
<td>680 ± 80</td>
<td>1460 ± 240**</td>
<td>1340 ± 280</td>
<td>1090 ± 230</td>
<td>1350 ± 300</td>
<td>570 ± 50</td>
</tr>
</tbody>
</table>

Mean ± SEM. n = 5–8. Statistically significant changes from the control values (= 0 day) are shown as follows: * P < 0.05, ** P < 0.01.

KClO₄. – At 10 mg/l dose level serum hormones were unchanged, but at 50 mg/l T₃ fell from 2.1 to 1.7 nmol/l (P < 0.05) and serum T₄ from 56 to 36 nmol/l (P < 0.01). Similarly, T₄ remained low at 100 and 500 mg/l dose level and T₃ at 100 mg/l dose level. Serum TSH rose at 100 mg/l from 610 to 1170 ng/ml (P < 0.05) and continued to rise to 1490 ng/ml at 500 mg/l (P < 0.01) (Fig. 3).

KI. – There were no statistically significant changes in the hormone concentrations at 10–1000 mg/l dose levels of KI in 4 days (data not shown).

Serum T₃, T₄ and TSH concentrations during administration of the four antithyroid drugs for various times

PTU. – When PTU (10 mg/l) was given, serum T₃ fell on the 2nd day from 1.8 to 0.5 ng/ml (P < 0.01) and remained at this low level for several days.
Serum T₄ fell from 50 to 38 nmol/l \((P < 0.05)\) on the 4th day and reached a very low minimum (12.1 nmol/l, \(P < 0.01)\) on the 9th day. Serum TSH rose from 520 to 2450 ng/ml on the 6th day \((P < 0.01)\) and increased further to a high maximum of 4550 ng/ml on the 9th day \((P < 0.01)\), and then fell to 1500 ng/ml on the 14th day (Table 1).

The weights of anterior pituitaries were increased and the rats had goitres as early as on the 4th day of the PTU-treatment (Table 2).

MMI. – With 5 mg/l of MMI in drinking water, serum TSH rose from 505 to 2300 ng/ml on the 6th day \((P < 0.01)\), then fell to 990 and 800 ng/ml on the 9th and 14th day, respectively. The fall in serum T₄ was significant on the 6th \((P < 0.05)\) and 14th day \((P < 0.01)\). Serum T₃ remained unchanged during the experiment (Table 1).

KCIO₄. – When 100 mg/l of KCIO₄ was given, serum TSH rose from 610 to 1120 ng/ml on the 4th day remained at that level. Serum T₃ decreased from 2.0 to 1.6 mmol/l on the 4th and 6th day. Serum T₄ also decreased from the 2nd day but the change was not statistically significant in this experiment (Table 1).

KI. – When KI (100 mg/l) was administered in drinking water, serum TSH rose from 680 to 1460 ng/ml on the 2nd day \((P < 0.05)\) but then declined to the initial level. Serum T₄ tended to fall at the beginning of the treatment but increased on the 6th day from 52 to 74.8 nmol/l \((P < 0.05)\) and on the 14th day to 82.7 nmol/l \((P < 0.01)\). Serum T₃ concentration was decreased on the 2nd day only (Table 1).

Table 2.
The weights of the thyroid and anterior pituitary glands of the rats during administration of PTU (10 mg/l) in drinking water for 4 or 10 days.

<table>
<thead>
<tr>
<th>Wet weight (mg/100 g of body weight)</th>
<th>Thyroid gland</th>
<th>Anterior pituitary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control 4 days on PTU</td>
<td>5.8 ± 0.3</td>
<td>2.6 ± 0.1</td>
</tr>
<tr>
<td>Control 10 days on PTU</td>
<td>13.8 ± 0.1*</td>
<td>3.5 ± 0.1*</td>
</tr>
<tr>
<td>Control 4 days on PTU</td>
<td>16.0 ± 0.2**</td>
<td>3.4 ± 0.1*</td>
</tr>
</tbody>
</table>

Mean ± SEM of 6 animals in each group. * \(P < 0.05\), ** \(P < 0.01\) vs. the control rats.

277
Effect of graded doses of T₃ (○—○; 0–125 µg/kg iv; log scale) and T₄ (●—●; 5–375 µg/kg iv; log scale) on the serum TSH levels elevated by a prior PTU treatment (10 mg/l in drinking water for 4 days). The rats were killed 2 h after the injection of saline, T₃ or T₄. n = 4–5 at each dose level. Mean ± SEM. Statistics: * P < 0.05 vs. the PTU control rats (…).

Effects of various manipulations on serum TSH concentration in the PTU-treated animals

Reproducibility. — When PTU (10 mg/l) was given to groups of 5–7 rats in 5 separate experiments, serum TSH rose from 441 ± 52 to 906 ± 104 ng/ml (mean ± SEM) in 3 days and from 600 ± 51 to 1720 ± 125 ng/ml in 4 days. The respective coefficients of variation in TSH concentrations were 30% (3 days’ treatment) and 16% (4 days’ treatment).

Table 3.
The effect of cold exposure and TRH on the serum TSH levels in the PTU-treated rats (10 mg/l in drinking water for 4 days).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Serum TSH (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water control</td>
<td>446 ± 81</td>
</tr>
<tr>
<td>PTU control, 22°C</td>
<td>1173 ± 169</td>
</tr>
<tr>
<td>PTU and 30 min at +4°C</td>
<td>2177 ± 277*</td>
</tr>
<tr>
<td>PTU and 100 ng of TRH iv</td>
<td>2161 ± 150*</td>
</tr>
</tbody>
</table>

Mean ± SEM of 9–10 animals.
* P < 0.01 vs. the PTU control.
Effect of thyroid hormones, TRH and cold-exposure. -- In the first experiment the rats were given PTU (10 mg/l, 4 days) and then various amounts of T₃ or T₄ iv. Within 2 h small amounts of T₃ (1.7 μg/kg) and T₄ (5–30 μg/kg) did not significantly modify TSH levels but higher doses rapidly decreased the serum TSH levels (Fig. 4). In another experiment the high TSH levels, induced by PTU, were further increased by iv injection of 100 ng of TRH (from 1173 ± 169 to 2177 ± 277 ng/ml, P < 0.01) and by transferring the rats from 22 to 4°C for 30 min (to 2210 ± 80 ng/ml, P < 0.01) (Table 3).

DISCUSSION

In this study each antithyroid drug induced a different pattern of serum immunoassayable hormone levels at the beginning of treatment. We observed that in the PTU-treated rats T₃ fell and TSH increased early and T₄ decreased later. In the KClO₄-treated rats T₃ and T₄ decreased at a parallel rate and TSH levels increased at the same time. Administration of MMI did not affect T₃ at all, and after KI serum T₄ was even increased, although serum TSH levels were at least transiently increased in both cases.

Although in this study serum thyroid hormone levels did not fall before the rise in serum TSH, we still believe that these antithyroid drugs primarily decrease either serum T₃ or T₄ or both, which, according to the classical feedback theory, then leads to a rise in serum TSH. We want to point out that in the rats kept on a low iodide diet serum TSH was also increased before any detectable change in serum T₃ or T₄ (Riesco et al. 1977). The fact that we were not able to observe in all cases significant falls in serum thyroid hormone levels before the rise of serum TSH may be due to the inability of T₃ and T₄ radio-immunoassays to detect minute, but possibly physiologically significant, T₃ and T₄ changes.

In earlier studies antithyroid drugs have been used in drinking water in concentrations of 100–1000 mg/l (Bakke & Lawrence 1964; Wilber & Utiger 1967; Liewendahl et al. 1972; Griessen & Lemarchand-Béraud 1973), and those treatments have increased serum TSH levels in 1 day–4 months. Our results show that these doses are unnecessarily high since significant changes in serum T₃, T₄ and TSH were obtained at doses 10–200 times lower. The disappearance of the initial serum TSH rise in response to PTU (Griessen & Lemarchand-Béraud 1973) or thyroidectomy (Van Rees 1966) is said to be due to the exhaustion of pituitary TSH reserves. We were able to confirm the transient rise in serum TSH levels even with very low doses of PTU as well as with MMI, and to some extent with KI. On the other hand, KClO₄ seemed to be able to stimulate TSH secretion continuously. Possibly the dose was relatively lower than that of PTU and MMI, and did not cause the depletion of pituitary TSH.
It was also demonstrated here that MMI did not affect serum T_3 level, which was clearly decreased by PTU. This result was not unexpected because substantial amounts of serum T_3 are derived from serum T_4 by deiodination, and PTU – but not MMI – is known to block this reaction (Van Arsdale & Williams 1956; Hershman & Van Middlesworth 1962; Morreale de Escobar & Escobar del Rey 1967). We also found that our initial TSH burst was associated with the fall of either serum T_3 (PTU and KClO₄) or T_4 (MMI). It is difficult to say whether T_3 or T_4 is able to inhibit TSH secretion at the anterior pituitary level because there are pituitary receptors for both hormones (Oppenheimer et al. 1976) but, on the other hand, T_4 is rapidly deiodinated to T_3 in the anterior pituitary (Silva et al. 1978).

In this study KI administration also led to the initial TSH burst. Later serum T_4 level began to rise and serum TSH level decline. So it appears that low KI doses (about 4 mg/day) initially work antithyroidally but later, perhaps due to increased availability of iodide, T_4 synthesis is increased. There is no previous information about the effects of small doses of iodide on serum TSH but large doses have slightly increased serum TSH level at 4 months (Liewendahl et al. 1972).

The present results prompted us to set up a model in which stimulated TSH secretion can be studied. PTU is given in drinking water (10 mg/l) for 4 days to increase serum TSH levels. The reproducibility of this TSH response is good, even better than that obtained with the cold-exposed animals (Tuomisto et al. 1975; Männistö et al. 1978). Our model appears to be useful because elevated TSH levels are further increased in response to cold or to administration of TRH and rapidly decreased by thyroid hormones. Both the TRH-induced and cold-induced TSH responses are well comparable with those observed in the normal rats (Tuomisto et al. 1975; Ranta et al. 1977; Männistö et al. 1978, 1979). We have also shown that various drugs can modify the PTU-induced TSH secretion (Männistö & Ranta 1978).

ACKNOWLEDGMENTS

These studies were partially supported by grants from Jalmari and Rauha Ahokas Foundation, Orion Pharmaceuticals Co., Signe och Ane Gyllenberg Stiftelse and the Academy of Finland. The rat TSH radioimmunoassay kit was a gift from NIAMDD Rat Pituitary Program, NIH, Bethesda, Maryland, USA.

REFERENCES

Bakke J. & Lawrence N.: Acta endocr. (Kbh.) 46 (1964) 111.
Griessen M. & Lemarchand-Béraud T.: Endocrinology 92 (1973) 166.
Ranta T.: Endocrinology 96 (1975) 1566.

Received on November 28th, 1978.