The impact of vitamin D status on hungry bone syndrome after surgery for primary hyperparathyroidism

Reto Martin Kaderli1,2, Philipp Riss1, Daniela Dunkler3, Peter Pietschmann4, Andreas Selberherr1, Christian Scheuba1 and Bruno Niederle1

1Section of Endocrine Surgery, Division of General Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria, 2Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland, 3Section for Clinical Biometrics, Centre of Medical Statistics, Informatics and Intelligent Systems (CeMSIIS), Medical University of Vienna, Vienna, Austria, and 4Department of Pathophysiology and Allergy Research, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria

Abstract

Objective: Prolonged hypocalcemia but normal intact parathyroid hormone (iPTH) levels after surgery for primary hyperparathyroidism (PHPT) are referred to as ‘hungry bone syndrome’ (HBS). The aim was to evaluate preoperative risk factors for HBS with a focus on the impact of 25-hydroxyvitamin D (25(OH)D) deficiency.

Design: Patients having undergone initial successful surgery for sporadic PHPT within 6 years were considered for retrospective analysis.

Methods: A total of 385 patients were evaluated, of whom 33 (8.6%) developed HBS influencing negatively the postoperative bone metabolism. All patients underwent biochemical evaluations two days before parathyroid surgery and were followed biochemically on a daily basis in the first postoperative week and thereafter at 8 weeks and 6 months.

Conclusions: No relationship was established between preoperative 25(OH)D deficiency and HBS. The only significant risk factor for HBS in multivariable analysis was high levels of preoperative iPTH. As HBS therefore cannot be predicted preoperatively, we recommend a consistent postoperative calcium and vitamin D supplementation to improve the bone metabolism.

Introduction

Primary hyperparathyroidism (PHPT) is a common endocrine disorder with an incidence of approx. 90 per 100 000 patient-years (1). It is defined by elevation of serum calcium (Ca) due to an inappropriate elevation or unsuppressed intact parathyroid hormone (iPTH), which leads to the absorption of Ca from bone via increased osteoclastic activity and reabsorption of Ca in the renal tubules (2). A single parathyroid tumor is the most frequent cause of PHPT, whereas multiple gland disease is less common (2). Surgery involving adequate resection of hypersecreting tissue is the treatment of choice, resulting in an intraoperative iPTH decay of ≥50% from a defined ‘baseline’ level before skin incision within 10 min after excision (‘Vienna Criterion’) (3). iPTH reaches its lowest level on the first postoperative day with rapid subsequent recovery, while serum Ca decreases more slowly with the lowest levels between the second and third day (4, 5).

A severe and prolonged hypocalcemia despite normal or even elevated levels of iPTH due to a rapid increase of bone formation is called ‘hungry bone syndrome’ (HBS) (6). It should be treated by Ca and vitamin D supplementation (6). The underlying reason is assumed...
to be the normalization of high circulating iPTH levels, followed by enhanced bone formation with increased skeletal Ca requirement. Risk factors being discussed for HBS are advanced age, higher preoperative serum Ca, iPTH, alkaline phosphatase (ALP) and osteocalcin, as well as decreased serum magnesium and albumin levels (6, 7). Previous studies have examined the relationship between adenoma size and weight and postoperative serum Ca with conflicting results (8, 9).

Depleted levels of 25-hydroxyvitamin D (25(OH)D), which most accurately reflect vitamin D3 insufficiency (10), have been suggested to be a risk factor for the development of HBS: Low levels of 1,25-dihydroxyvitamin D (1,25(OH)2D), its activated endogenous variant, might be related to decreased absorption of Ca, followed by a poor mineralization of the skeleton (11). Two studies found an association between preoperative 25(OH)D deficiency and hypocalcemia within the first postoperative week by asking the patients about the occurrence of hypocalcemic symptoms; yet, failed to measure serum Ca levels (12, 13). In a randomized-controlled trial, Rolighed et al. found no association between 25(OH)D and postoperative serum Ca level (14).

On the other hand, deficiency of 25(OH)D is associated with reactive hyperparathyroidism and thus elevated postoperative iPTH levels: (2, 15) 25(OH)D blunts the calcemic effect of iPTH, and while 1,25(OH)2D has an antiproliferative effect on parathyroid cells, its deficiency directly increases iPTH secretion independent of other factors.

Besides one study investigating vitamin D supplementation among PHPT patients with low 25(OH)D levels (14), studies investigating the relationship between 25(OH)D deficiency and postoperative Ca and iPTH levels after removing a solitary parathyroid adenoma are lacking. In view of the discussion concerning perioperative vitamin D supplementation, the aim of the present study was to evaluate risk factors for HBS with a focus on the impact of preoperative 25(OH)D deficiency on peri- and postoperative Ca and iPTH levels.

Subjects and methods

Patients

For the purposes of this study, we considered patients who had undergone initial surgery for sporadic PHPT. All data were prospectively documented and retrospectively analyzed. Indication for surgery followed the guidelines of the American Association of Endocrine Surgeons (16) and the ‘Guidelines for the management of asymptomatic primary hyperparathyroidism’ (17). In all patients, solitary parathyroid adenomas were removed under general anesthesia by focused parathyroidectomy, unilateral or bilateral neck exploration. The diagnosis of solitary parathyroid adenoma was predicted intraoperatively by the decline of iPTH in the serum of ≥50% below baseline (‘Vienna Criterion’ (3)) and postoperatively confirmed by the histological workup and long-lasting normalization of the parathyroid metabolism.

Based on the reference values of our laboratory, HBS was defined by an albumin-adjusted total serum Ca <2.20 mmol/L and an iPTH ≥15 pg/mL after postoperative day 4 (between postoperative days 5 and 7).

Patients with preoperative renal insufficiency (creatinine >1.2 mg/dL in men and >0.9 mg/dL in women; glomerular filtration rate <90 mL/min), preoperative medication possibly influencing biochemical workup (vitamin D or Ca supplementation, calcimimetic agents, bisphosphonates, thiazide diuretics and steroids), parathyroid or thyroid reintervention, hyperthyroidism, multiple gland and hereditary disease (familial hypocalciuric hypercalcemia, multiple endocrine neoplasia) were excluded.

All patients gave informed consent to all diagnostic and therapeutic procedures. The prospective data collection and the retrospective analysis were approved by the Ethics Committee of the Medical University of Vienna (resolution number 1979/2015).

Study protocol

All patients underwent biochemical evaluations two days before parathyroid surgery and intraoperatively by PTH monitoring (3). Following the standardized study protocol, none of the patients took Ca or vitamin D supplementation three months or longer before surgery. All patients were hospitalized for one week and followed biochemically on a daily basis with a daily analysis of the study parameters in the first postoperative week and thereafter at 8 weeks and 6 months postoperatively.

Symptomatic patients (such as perioral paresthesia and tingling extremities) were supplemented after the diagnosis of an HBS (between postoperative day 5 and 7) with Ca and 25-hydroxycholecalciferol (1000 mg/880 IE) in combination with 1,25-dihydroxycholecalciferol (calcitriol, 0.25 µg) twice daily. Calcitriol was given to

European Journal of Endocrinology

Vitamin D and primary hyperparathyroidism

Clinical Study

R M Kaderli and others

Vitamin D and primary hyperparathyroidism

www.eje-online.org
promote absorption of dietary Ca from the gastrointestinal tract and to increase renal tubular reabsorption of Ca.

Biochemical analyses

All measurements were performed at the central laboratory of the Medical University of Vienna using standard laboratory methods. The following parameters were evaluated two days before surgery: Ca, ionized Ca (iCa), magnesium, creatinine, albumin, 25(OH)D, 1,25(OH)2D, ALP, iPTH, osteocalcin, C-terminal telopeptide of type I collagen (beta-crosslaps), procollagen type I amino-terminal propeptide (P1NP), bone-specific alkaline phosphatase (BAP) and testosterone. Ca excretion was measured after 24-h urine collection for Ca (24 hU_Ca). Creatinine was measured again on postoperative day one to exclude renal insufficiency due to postoperative circulatory disorders.

Ca, magnesium, creatinine, albumin and ALP were determined by a routine multianalyzer. iCa levels were measured with an ion-sensitive gas analyzer (Radiometer, Copenhagen, Denmark). Chemiluminescence immunoassays (DiaSorin, Saluggia, Italy) were used for 25(OH)D, 1,25(OH)2D and BAP. iPTH, serum markers of bone turnover (beta-crosslaps, osteocalcin P1NP) and testosterone were measured using electrochemiluminescence immunoassays (Roche Diagnostics).

Bone mineral density (BMD)

Areal bone mineral density measurements of the postero-anterior lumbar spine at L1–L4 (BMD_lumbar) and the left femoral neck (BMD_neck) were performed with dual-energy X-ray absorptiometry on a QDR-4500 scanner (Hologic Inc., Waltham, MA, USA). All measurements were conducted using the standard procedures recommended by the manufacturer.

Statistics

The data were prospectively documented and retrospectively analyzed. Continuous data are presented as median, 1st and 3rd quartile (interquartile range (IQR)) and categorical variables are given as absolute frequencies and percentages. Various preoperative parameters of patients with (group 1) and without (group 2) HBS are compared using either t-tests or Wilcoxon tests, depending on the distribution of the underlying continuous risk factor or chi-square tests.

Spearman correlation was used to assess the correlation structure among suspected preoperative risk factors.

Univariate, bivariate and multivariable logistic regression was used to assess the association between preoperative, potential risk factors and HBS. Right-skewed risk factors were log-transformed prior to analysis and the relative decrease in iPTH between the ‘baseline’ level before skin incision and the first postoperative day was grouped into three tertiles: 0–80, 80–90 and 90–100%. For a unified presentation of the results (odds ratios (OR) with 95% confidence intervals (CI)), we present ORs comparing a patient at the 33rd percentile of the respective continuous risk factor with another patient at the 66th percentile (reference).

A multivariable logistic regression model for HBS was devised based on the clinical relevance of potential risk factors and correlation among these risk factors. C-indices, which are equivalent to the area under the curve (AUC), are given to quantify the predictive performance. The c-index states the probability that a randomly chosen patient with HBS has a higher predicted risk than a randomly chosen patient without HBS, with a value of 1 representing perfect discrimination. Line diagrams with mean and one standard error of the mean visualize the progression of pre- and postoperative kinetics of Ca and iPTH. A boxplot shows the distribution of 25(OH)D two days before surgery according to the four seasons. Analysis of variance was applied to test for differences in 25(OH)D between the seasons. All available cases were used for each statistical model. Statistical significance was defined at a 2-sided level of $P<0.05$. We used SAS, version 9.2 (2008; SAS Institute Inc, Cary, NC, USA) for analysis and R, version 3.2.3 for figure preparation.

Results

Study population

Overall, 385 (277 (72.0%) female and 108 (28.1%) male) patients at a median age of 59.0 (IQR: 49.0, 68.0) years were included in the present study (Fig. 1).

By definition, HBS was documented in 33 (8.6%) subjects (group 1). Compared to group 2 (patients without HBS), group 1 was significantly older (68.0 years (IQR: 63.0, 73.0) vs 58.0 years (IQR: 49.0, 68.0); $P=0.001$).

Preoperative biochemical parameters and BMD for patients in both groups are shown in Table 1.

Focused parathyroidectomy was performed in 162 (42.1%), unilateral neck exploration in 89 (23.1%) and bilateral neck exploration in 134 (34.8%) patients. The
67 (17.4%) patients (5/33 (15.2%) in group 1 and 62/352 (17.6%) in group 2; \(P = 0.721 \).

One patient of group 2 developed persistent PHPT (i.e. Ca > 2.55 mmol/L; iPTH > 65 pg/mL longer than 6 months postoperatively). This subject was excluded from all statistical evaluations.

Permanent hypoparathyroidism (i.e. Ca < 2.20 mmol/L; iPTH < 15 pg/mL longer than 6 months postoperatively) was documented in none of the patients.

Figures 2 and 3 show the pre- and postoperative kinetics of Ca and iPTH during the first 8 weeks.

Correlation between preoperative risk factors for HBS

25(OH)D correlated neither with iPTH \((r = -0.359) \), the median volume of the removed adenomas \((r = -0.221) \) nor with the serum markers of bone turnover ALP \((r = -0.176) \), osteocalcin \((r = -0.141) \), beta-crosslaps \((r = -0.051) \), P1NP \((r = -0.100) \) or BAP \((r = -0.217) \) in applying the Spearman test. Furthermore, no association was established between 25(OH)D and BMD\(_{\text{neck}}\) \((r = -0.045) \) as well as BMD\(_{\text{lumb}}\) \((r = 0.009) \).

Regarding the associations between serum markers of bone turnover, osteocalcin was strongly correlated with both beta-crosslaps \((r = 0.783) \) and P1NP \((r = 0.822) \) and

Table 1: Preoperative biochemical parameters and BMD of patients with (group 1) and without (group 2) HBS.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Reference range*</th>
<th>Group 1 (n = 33) median (IQR)</th>
<th>Group 2 (n = 352) median (IQR)</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>mmol/L</td>
<td>2.20–2.55</td>
<td>2.86 (2.55; 2.96)</td>
<td>2.70 (2.62; 2.81)</td>
<td>0.126</td>
</tr>
<tr>
<td>iCa</td>
<td>mmol/L</td>
<td>1.16–1.32</td>
<td>1.49 (1.40; 1.61)</td>
<td>1.43 (1.38; 1.49)</td>
<td>0.012</td>
</tr>
<tr>
<td>Magnesium</td>
<td>mmol/L</td>
<td>0.66–1.07</td>
<td>0.83 (0.77; 0.87)</td>
<td>0.84 (0.80; 0.88)</td>
<td>0.297</td>
</tr>
<tr>
<td>Albumin</td>
<td>g/L</td>
<td>34–52</td>
<td>42.5 (40.0; 45.3)</td>
<td>45.3 (43.2; 47.4)</td>
<td><0.001</td>
</tr>
<tr>
<td>25(OH)D</td>
<td>nmol/L</td>
<td>75–250</td>
<td>35.6 (22.9; 49.8)</td>
<td>41.5 (28.9; 55.4)</td>
<td>0.240</td>
</tr>
<tr>
<td>1,25(OH)2D</td>
<td>pg/mL</td>
<td>19.9–86.5</td>
<td>53.5 (41.0; 84.5)</td>
<td>48.0 (30.9; 68.5)</td>
<td>0.184</td>
</tr>
<tr>
<td>ALP</td>
<td>U/L</td>
<td>30–130</td>
<td>97 (82; 125)</td>
<td>78 (63; 99)</td>
<td><0.001</td>
</tr>
<tr>
<td>iPTH</td>
<td>pg/mL</td>
<td>15–65</td>
<td>256 (144; 385)</td>
<td>110 (88; 157)</td>
<td><0.001</td>
</tr>
<tr>
<td>iPTH decrease (24h)</td>
<td>%</td>
<td>–</td>
<td>95.7 (91.5; 98.2)</td>
<td>84.3 (75.0; 92.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>Osteocalcin</td>
<td>ng/mL</td>
<td>11–46**</td>
<td>56.2 (33.6; 99.2)</td>
<td>36.3 (26.5; 51.7)</td>
<td>0.001</td>
</tr>
<tr>
<td>Beta-crosslaps</td>
<td>ng/mL</td>
<td>0.03–0.46**</td>
<td>0.79 (0.49; 1.14)</td>
<td>0.65 (0.46; 0.93)</td>
<td>0.160</td>
</tr>
<tr>
<td>BAP</td>
<td>ng/mL</td>
<td>16–92**</td>
<td>72.0 (54.0; 130)</td>
<td>59.0 (42.0; 82.0)</td>
<td>0.005</td>
</tr>
<tr>
<td>Creatinine</td>
<td>mg/dL</td>
<td>>1.2 (men), >0.9 (women)</td>
<td>19.8 (17.3; 28.9)</td>
<td>16.3 (12.3; 21.9)</td>
<td>0.007</td>
</tr>
<tr>
<td>24hU(_{\text{Ca}})</td>
<td>mmol/24h</td>
<td>2.5–7.5</td>
<td>0.87 (0.73; 0.99)</td>
<td>0.78 (0.68; 0.90)</td>
<td>0.127</td>
</tr>
<tr>
<td>BMD(_{\text{lumb}})</td>
<td>SD</td>
<td>≥1</td>
<td>–2.1 (–3.1; –0.5)</td>
<td>–1.5 (–2.4; –0.6)</td>
<td>0.213</td>
</tr>
<tr>
<td>BMD(_{\text{neck}})</td>
<td>SD</td>
<td>≥1</td>
<td>–1.7 (–2.0; –0.8)</td>
<td>–1.1 (–1.8; –0.3)</td>
<td>0.006</td>
</tr>
<tr>
<td>Testosterone</td>
<td>ng/mL</td>
<td>0.03–0.48****</td>
<td>0.12 (0.03; 0.24)</td>
<td>0.15 (0.08; 0.23)</td>
<td>0.308</td>
</tr>
<tr>
<td>(n = 277)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>ng/mL</td>
<td>1.9–8.4****</td>
<td>5.07 (4.08; 6.25)</td>
<td>4.14 (3.16; 4.79)</td>
<td>0.013</td>
</tr>
<tr>
<td>(n = 108)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Reference ranges depend on the measuring devices used, which changed over time; the highest and lowest reference value is indicated. **Reference range depends on age of male and hormonal status of female patients; the highest and lowest reference value is indicated. ***Reference value depends on hormonal status of female patients; the highest and lowest reference value is indicated. ****Reference value depends on the age of the patients; the highest and lowest reference value is indicated.

BMD, displayed by T-score (number of standard deviations (s.d.)); iPTH decrease (24h), relative decrease in iPTH level between the ‘baseline’ level before skin incision and the first postoperative day.
was positively correlated with ALP \((r=0.559) \) as well as BAP \((r=0.611) \). BMD_{lumb} was positively correlated with BMD_{neck} \((r=0.618) \).

The median volumes of removed adenomas, Ca and iCa were slightly associated with iPTH \((r=0.466, r=0.420 \text{ and } r=0.554, \text{ respectively}) \). Albumin, 24hU{\textsubscript{Ca}} and testosterone were neither correlated with BMD_{neck} \((r=0.079, r=0.006 \text{ and } r=0.096, \text{ respectively}) \) nor with osteocalcin \((r=-0.036, r=0.227 \text{ and } r=0.002, \text{ respectively}) \).

Univariate, bivariate and multivariable analysis of risk factors for HBS

An analysis of 25(OH)D two days before surgery, broken down according to seasonal measurement, showed significant differences with median values of 31.6 (IQR 19.2, 49.6) nmol/L in January–March vs 51.9 (IQR 34.5, 65.8) nmol/L in July–September \((P<0.001) \). However, univariate analysis of 25(OH)D failed to reveal an impact on HBS \((\text{c-index}=0.587) \) with an OR of 0.55 (95% CI, 0.14–2.22; \(P=0.388 \)) by comparing July–September with January–March.

Univariate logistic regression of potential preoperative risk factors for HBS is shown in Table 2. With an OR of 9.50 (95% CI 2.79–32.21; \(P<0.001 \)), a decrease of iPTH of 90–100% compared to 0–80% was significantly associated with HBS \((\text{c-index}=0.738) \).

Univariate logistic models adjusted for osteocalcin, BMDneck and 25(OH)D showed a significant relationship between iPTH and HBS \((\text{OR} 2.09, 95\% \text{ CI}, 1.47–2.97; P<0.001) \) (Table 2). iPTH had the highest predictive value \((\text{c-index}=0.785, 95\% \text{ CI}, 0.693–0.877) \), followed by osteocalcin \((\text{c-index}=0.685, 95\% \text{ CI}, 0.567–0.804) \), BMDneck \((\text{c-index}=0.648, 95\% \text{ CI}, 0.550–0.745) \) and 25(OH)D \((\text{c-index}=0.576, 95\% \text{ CI}, 0.466–0.687) \). Receiver-operating characteristic (ROC) curves are presented in Fig. 4.

Adjusting the univariate logistic models for osteocalcin \((\text{c-index}=0.672) \) and BMDneck \((\text{c-index}=0.651) \) with 25(OH)D did not increase the predictive performance.
Clinical Study

Vitamin D and primary hyperparathyroidism

Table 2 Univariate and multivariable logistic models of potential preoperative risk factors for HBS.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>n</th>
<th>33rd percentile</th>
<th>66th percentile (reference)</th>
<th>OR</th>
<th>95% CI of OR</th>
<th>P value</th>
<th>c-index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univariate logistic models</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>385</td>
<td>2.77</td>
<td>2.64</td>
<td>1.25</td>
<td>1.00–1.56</td>
<td>0.049</td>
<td>0.580</td>
</tr>
<tr>
<td>Magnesium</td>
<td>385</td>
<td>0.81</td>
<td>0.87</td>
<td>1.13</td>
<td>0.91–1.42</td>
<td>0.262</td>
<td>0.555</td>
</tr>
<tr>
<td>Albumin</td>
<td>385</td>
<td>43.6</td>
<td>46.3</td>
<td>1.92</td>
<td>1.45–2.54</td>
<td><0.001</td>
<td>0.709</td>
</tr>
<tr>
<td>25(OH)D</td>
<td>383</td>
<td>33.3</td>
<td>50.8</td>
<td>1.14</td>
<td>0.82–1.58</td>
<td>0.423</td>
<td>0.562</td>
</tr>
<tr>
<td>iPTH</td>
<td>385</td>
<td>145</td>
<td>96</td>
<td>2.04</td>
<td>1.60–2.59</td>
<td><0.001</td>
<td>0.787</td>
</tr>
<tr>
<td>Osteocalcin</td>
<td>378</td>
<td>45.7</td>
<td>30.4</td>
<td>1.76</td>
<td>1.38–2.24</td>
<td><0.001</td>
<td>0.672</td>
</tr>
<tr>
<td>24 hU₉Ca</td>
<td>374</td>
<td>9.76</td>
<td>6.15</td>
<td>0.61</td>
<td>0.41–0.89</td>
<td>0.010</td>
<td>0.640</td>
</tr>
<tr>
<td>BMD₉umb</td>
<td>352</td>
<td>−2.1</td>
<td>−1.0</td>
<td>1.25</td>
<td>0.91–1.70</td>
<td>0.16</td>
<td>0.570</td>
</tr>
<tr>
<td>BMDₙeck</td>
<td>355</td>
<td>−1.6</td>
<td>−0.7</td>
<td>1.63</td>
<td>1.17–2.27</td>
<td>0.004</td>
<td>0.651</td>
</tr>
<tr>
<td>Testosterone (men)</td>
<td>108</td>
<td>4.67</td>
<td>3.65</td>
<td>1.48</td>
<td>1.04–2.09</td>
<td>0.029</td>
<td>0.706</td>
</tr>
<tr>
<td>Adenoma volume</td>
<td>382</td>
<td>7.84</td>
<td>2.93</td>
<td>1.85</td>
<td>1.35–2.52</td>
<td><0.001</td>
<td>0.718</td>
</tr>
<tr>
<td>Multivariable logistic model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iPTH</td>
<td>346</td>
<td>143</td>
<td>97</td>
<td>2.09</td>
<td>1.47–2.97</td>
<td><0.001</td>
<td>0.825</td>
</tr>
<tr>
<td>Osteocalcin</td>
<td>45.6</td>
<td>30.0</td>
<td>3.00</td>
<td>1.05</td>
<td>0.73–1.49</td>
<td>0.804</td>
<td></td>
</tr>
<tr>
<td>BMDₙeck</td>
<td>−1.6</td>
<td>−0.7</td>
<td>−1.29</td>
<td>0.90</td>
<td>1.87</td>
<td>0.170</td>
<td></td>
</tr>
<tr>
<td>25(OH)D</td>
<td>34.0</td>
<td>50.6</td>
<td>0.68</td>
<td>0.46</td>
<td>1.02</td>
<td>0.061</td>
<td></td>
</tr>
</tbody>
</table>

Odds ratios (OR) are given comparing a patient at the 33rd percentile with another patient at the 66th percentile (reference). Reading example: A patient with preoperative Ca of 2.77 mmol/L (equaling the 33rd percentile) has an OR of 1.25 with a 95% CI of 1.00–1.56 compared to another patient with preoperative Ca of 2.64 mmol/L.

Discussion

The results of the present study document that 8.6% of the patients with sporadic PHPT developed HBS after removal of a solitary parathyroid adenoma. Irrespective of seasonal differences, 25(OH)D deficiency did not influence its occurrence. A high preoperative level of iPTH (median 256 pg/mL vs 110 pg/mL) was strongly associated with HBS, whereas there was no association between osteocalcin and BMDneck in the multivariable analysis.

The incidence of HBS in this study is in accordance with the findings of Brasier et al. (10) who documented HBS in 12.6%. Other smaller case series (6, 18, 19) have found incidences between 4% and 90%. In a case report authored by Graal et al. (20), short preoperative treatment with pamidronate and vitamin D supplementation failed to inhibit postoperative development of HBS. Preoperatively depleted levels of 25(OH)D have been variously discussed to be a risk factor for HBS (12, 13, 21, 22). The hypothesis of HBS development is based on skeleton demineralization due to low circulating levels of 1,25(OH)2D, leading postoperatively to an increased skeletal Ca requirement (11). However, multivariable analyses were not performed in any of the aforementioned studies and two studies were based on ‘clinical symptoms’ without postoperative Ca measurements (12, 13). Another prospective investigation explored only 25(OH)D as a risk factor for HBS in patients who were treated with 1-alpha-hydroxy-vitamin D3 before surgery (21). In the present study, 25(OH)D was not shown to be a significant risk factor for the development of HBS, neither in univariate nor in multivariable analysis.

Figure 4

ROC curves based on univariate logistic regression for iPTH, osteocalcin, BMDneck and 25(OH)D on HBS.
of 25(OH)D deficiency on skeleton mineralization and indirectly on HBS (11). Although the results of Press et al. (23) require cautious interpretation due to systematic postoperative treatment with oral Ca, the incidence and timing of hypocalcemia symptoms were, similarly to our study, independent of 25(OH)D after surgery.

As associations of 25(OH)D deficiency with secondary hyperparathyroidism and hyperproliferation of parathyroid cells have been described, a correlation analysis of preoperative 25(OH)D with iPTH and the median volume of removed adenoma was performed and produced no significant results (2, 15).

The present univariate analysis confirmed the risk factors for HBS discussed in literature (11, 21, 24, 25, 26), such as high Ca, ALP and osteocalcin levels, as well as a large median volume of the hyperfunctioning parathyroid gland. However, other studies (27, 28) found no evidence for the aforementioned HBS risk factors. Likewise, the current multivariable logistic model revealed high preoperative iPTH levels as the only significant risk factor for HBS. In accordance with the study of Brasier and Nussbaum (11), patients with HBS presented preoperative iPTH levels that were increased by more than twofold.

Some of the risk factors, such as iPTH and Ca, were associated in the correlation analysis. This finding has also been documented by Nasiri et al. (29) and explained as increased Ca (re-)absorption from bone and renal tubules in case of elevated iPTH levels (2). The studies by Zamboni and Folse (8) and Brasier and Nussbaum (11) identified the volume of the removed parathyroid gland as a predictive value. This finding may be explained by the current association between iPTH and the volume of removed adenoma. Likewise, Nasiri et al. (29) found a strong correlation between higher levels of preoperative iPTH and heavier and larger adenoma in PHPT.

Several investigations have reported radiological evidence of PHPT-related bone manifestation, such as cysts and brown tumors, bone erosions or phalanx resorption, as risk factors for HBS (19, 21, 22, 30). In an attempt to evaluate this finding, we used preoperative BMD_{neck} as an objective comparison parameter. BMD_{neck} was a significant risk factor for the development of HBS in univariate, but not in the multivariable analysis. It has been argued that BMD may be an imperfect marker, as BMD changes occur slowly (7). Moreover, osteocalcin had no significant impact on the development on HBS in multivariable analysis, although osteocalcin has been reported to be a specific serum marker of bone (7).

Testosterone is known to stimulate renal Ca transport and therefore the Ca excretion (31). In the current univariate analysis, high levels of testosterone in males (median 5.07 pg/mL in group 1 vs 4.14 pg/mL in group 2) were a significant risk factor for HBS. On the other hand, univariate analysis revealed an inverse correlation between 24 hU_{Ca} and HBS.

Braisier and Nussbaum (11) identified low magnesium and albumin levels in patients with HBS. Low serum magnesium is particularly found in patients with advanced bone disease in PHPT (32). While magnesium was not associated with HBS, a decreased albumin proved to be a significant risk factor in our univariate analysis. The rationale for the latter remains unclear. A possible explanation may be the finding of Afshinnia et al. (33), listing hypoalbuminemia as an independent risk factor for osteoporosis. Possible reasons include an activation of osteoclasts, suppression of osteogenesis and change of the metabolism of iPTH and vitamin D-binding protein (33). However, we found no correlation between albumin and BMD_{neck} or osteocalcin.

Postoperative HBS leads to a requirement of Ca and vitamin D supplementation (34). According to the present analysis of risk factors, postoperative HBS cannot be predicted preoperatively. The definite diagnosis can only be made by measuring Ca and iPTH after postoperative day 4 (between postoperative day 5 and 7). Mildly symptomatic postoperative hypocalcemia due to HBS can be prevented by a postoperative supplementation of Ca and 25-hydroxycholecalciferol (1000 mg/880IE) in combination with 1,25-dihydroxycholecalciferol (calcitriol; 0.25 µg) twice a day.

We recommend a laboratory control 8 weeks postoperatively to re-evaluate the parathyroid metabolism and to reappraise the requirement of Ca and vitamin substitution.

To our knowledge, this is the largest study of its kind by analyzing 385 highly selected patients for all relevant HBS risk factors discussed in literature, along with consistent postoperative biochemical Ca and iPTH measurements. Furthermore, it is the first study to simultaneously evaluate the predictive value of preoperative 25(OH)D and different bone markers, such as osteocalcin, beta-crosslaps, P1NP, BAP, BMD_{lumb} and BMD_{neck}. BMD of the radius is not shown in the present study. However, it was routinely measured and had a positive correlation with BMD_{lumb} and BMD_{neck}. 25(OH)D levels were rather high in the present study population. Nevertheless, in all patients, preoperative vitamin D supplementation in the last three months was excluded by anamnnesis. As HBS occurs in approximately 10% of the patients only, multivariable analysis could only be performed for a limited number
of parameters, namely iPTH, osteocalcin, BMD
and 25(OH)D, thus yielding restricted explanatory power.

In conclusion, the present study revealed no
relationships between preoperative 25(OH)D deficiency,
HBS and severity of metabolic bone disease, respectively,
nor with iPTH or size of parathyroid adenoma. The only
significant risk factor for the development of HBS in
multivariable analysis was a high level of preoperative
iPTH, which was increased by more than twofold compared
to patients without HBS and showed associations with Ca
levels and volumes of removed adenoma. Preoperative
and intraoperative parameters are unable to indicate HBS.
Therefore, we suggest a consistent postoperative Ca and
vitamin D supplementation as cost-effective approach to
restore a ‘normal’ bone metabolism.

Declaration of interest
The authors declare that there is no conflict of interest that could be
perceived as prejudicing the impartiality of the clinical study reported.

Funding
This research did not receive any specific grant from any funding agency in
the public, commercial or not-for-profit sector.

Author contribution statement
R M K and B N designed the study. R M K, P R, A S, C S and B N cared for the
patients and obtained clinical concepts. R M K and D D analyzed the
data. R M K wrote the first draft of the manuscript. All authors contributed
to the interpretation of the data and writing of the manuscript, and
approved the final version of the manuscript.

References
1 Niederle B, Stamm I, Langle F, Schubert E, Woloszczuk W & Prager R. Primary hyperparathyroidism in Austria: results of an 8-year
Sam Diego, USA.
3 Riss P, Kaczirek K, Heinz G, Bieglmayer C & Niederle B. A ‘defined
baseline’ in PTH monitoring increases surgical success in patients
org/10.1016/j.surg.2007.05.004)
4 Debruyne F, Delaere P, Ostyn E, Van den Bruel A & Bouillon R. Daily
follow-up of serum parathyroid hormone and calcium after surgery for primary hyperparathyroidism. Journal of Otolaryngology 1999 28
305–308.
5 Debruyne F, Delaere P & Vander Poorten V. Postoperative course of
serum parathyroid hormone and calcium after surgery for primary
hyperparathyroidism. Acta Oto-Laryngologica Belgica 2001 55
6 Witteven JE, van Thiel S, Romijn JA & Hamdy NA. Hungry bone
syndrome: still a challenge in the post-operative management of primary
hyperparathyroidism: a systematic review of the literature. European
Journal of Endocrinology 2013 168 R45–R53. (https://doi.org/10.1530/EJE-
12-0528)
7 Rianon N, Alex G, Callender G, Jimenez C, Hu M, Grubs B, Moreno
M, Watthoo C, Petak S & Perrier N. Preoperative serum osteocalcin
may predict postoperative elevated parathyroid hormone in patients
with primary hyperparathyroidism. World Journal of Surgery 2012 36
1320–1326. (https://doi.org/10.1007/s00268-012-1432-4)
8 Zamboni WA & Folese R. Adenoma weight: a predictor of transient
hypocalcemia after parathyroidectomy. American Journal of Surgery
1986 152 611–615. (https://doi.org/10.1001/0002-9610(86)90436-8)
9 Strickland PL & Recabaren J. Are preoperative serum calcium, parathyroid hormone, and adenoma weight predictive of
10 Hollis BW. Circulating 25-hydroxyvitamin D levels indicative of
vitamin D sufficiency: implications for establishing a new effective
dietary intake recommendation for vitamin D. Journal of Nutrition
11 Brasier AR & Nussbaum SR. Hungry bone syndrome: clinical
org/10.1016/0002-9343(88)90100-3)
12 Lang BH & Lo CY. Vitamin D3 deficiency is associated with late-
onset hypocalcemia after minimally invasive parathyroidectomy in a
vitamin D borderline area. World Journal of Surgery 2010 34
13 StewartZA, Blackford A, SomervellH, FriedmanK, Garrett-Mayer E,
Dackiw AP & Zeiger R. 25-hydroxyvitamin D deficiency is a risk
factor for symptoms of postoperative hypocalcemia and secondary
hyperparathyroidism after minimally invasive parathyroidectomy.
org/10.1016/j.surg.2005.09.018)
14 Rolighed L, Rejmark L, Sikjaer T, Heickendorff L, Vestergaard P,
Mosekilde L & Christiansen P. Vitamin D treatment in primary
hyperparathyroidism: a randomized placebo controlled trial. Journal of
doi.org/10.1210/jc.2013-2978)
15 Untch BR, Barfield ME, Dar M, Dixit D, Leight GS Jr & Olson JA
Jr. Impact of 25-hydroxyvitamin D deficiency on perioperative
parathyroid hormone kinetics and results in patients with primary
org/10.1016/j.surg.2007.09.026)
16 Wilhelm SM, Wang TS, Ruan DT, Lee JA, Asa SL, Duh QY, Doherty
GM, Herrera MF, Pasieka JL, Perrier N, Ellis A. Recovery pattern of patients with osteitis fibrosa cystica in primary
hyperparathyroidism after successful parathyroidectomy. Journal of Otolaryngology 2001 30
primary hyperparathyroidism: summary statement from the Fourth International Workshop. Journal of Clinical Endocrinology and
Metabolism 2014 99 3561–3569. (https://doi.org/10.1210/jc.2014-
1431)
18 Malabu UH & Founda MA. Primary hyperparathyroidism in Saudi
Arabia: a review of 46 cases. Medical Journal of Malaysia 2007 62
394–397.
19 Agarwal G, Mishra SK, Kar DK, Singh AK, Arya V, Gupta SK & Mittal
A. Recovery pattern of patients with osteitis fibrosa cystica in primary
hyperparathyroidism after successful parathyroidectomy. Surgery 2002
132 1075–1083; discussion 1083–1075. (https://doi.org/10.1067/
msy.2002.128484)
20 Graal MB & Wolffenbuttel BH. Consequences of long-term
hyperparathyroidism. Netherlands Journal of Medicine 1998 53
37–42. (https://doi.org/10.1016/S0300-2977(98)00010-2)
21 Heath DA, Van’t Hoff W, Barns AD & Gray JG. Value of 1-alpha-
hydroxy vitamin D3 in treatment of primary hyperparathyroidism
Vitamin D and primary hyperparathyroidism

before parathyroidectomy. BMJ 1979 1 450–452. (https://doi.org/10.1136/bmj.1.6161.450)

26 Loke SC, Tan AW, Dalan R & Leow MK. Pre-operative serum alkaline phosphatase as a predictor for hypocalcemia post-parathyroid adenectomy. *International Journal of Medical Sciences* 2012 9 611–616. (https://doi.org/10.7150/ijms.4861)

32 Jones CT, Sellwood RA & Evanson JM. Symptomatic hypomagnesaemia after parathyroidectomy. BMJ 1973 3 391–392. (https://doi.org/10.1136/bmj.4.5876.391)

Received 21 May 2017
Revised version received 28 August 2017
Accepted 6 September 2017