Comparison of universal screening with targeted high-risk case finding for diagnosis of thyroid disorders

Sima Nazarpour, Fahimeh Ramezani Tehrani1, Masoumeh Simbar, Maryam Tohidi2, Hamid AlaviMajd3 and Fereidoun Azizi4

Department of Reproductive Health and Midwifery, Faculty of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences and Health Services, Tehran, Iran, 1Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran, 2Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran, 3Department of Biostatistics, Faculty of Paramedicine, Shahid Beheshti University of Medical Sciences and Health Services, Tehran, Iran and 4Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abstract

Objective: Debate about the need for universal screening of thyroid dysfunction in pregnancy is ongoing. The present study aimed to compare universal screening with targeted high-risk case findings for early diagnosis of thyroid disorders in Iranian pregnant women.

Study design: This cross-sectional prospective study was carried out on 1600 pregnant women in their first trimester. A checklist, including all related risk factors recommended by The American Thyroid Association, was completed for all participants. Serum concentrations of thyroxine (T4), T-uptake, TSH and thyroid peroxidase antibody (TPOAb) were measured and thyroid status was documented, based on hormonal measurements and clinical examinations.

Results: There were 656 women (44.3%) that had at least one risk factor for thyroid diseases and were eligible for the targeted high-risk case finding (high-risk group) approach, while 55.7% had no risk factors (low-risk group). Using the universal screening approach, there were 974 women (65.8%) with normal thyroid status and 506 participants (34.2%) with thyroid disturbances, including overt hyperthyroidism (0.7%), overt hypothyroidism (1.1%), subclinical hypothyroidism (30.1%; positive TPOAb (5.5%) and negative TPOAb (24.6%); and euthyroid and positive TPOAb (2.3%). Of women with thyroid dysfunction, 64.4% were in the high-risk group and 35.6% were in the low-risk group (P<0.0001).

Conclusions: The targeted high-risk case finding approach overlooks about one-third of pregnant women with thyroid dysfunction. If ongoing prospective trials provide evidence on the efficacy of treating subclinical hypothyroidism in pregnancy, in populations with a low prevalence of presumed risk factors, the targeted high-risk case finding approach will be proven inefficient.

Introduction

Thyroid dysfunction is the second most common endocrine disturbance in women of reproductive age (1, 2), with a high prevalence in pregnant women. About 2–3% of pregnant women are diagnosed with hypothyroidism (0.3–0.5% with overt hypothyroidism and 2–2.5% with subclinical hypothyroidism), whereas hyperthyroidism has been reported in 0.1–0.4% of pregnant women. Furthermore, about 10–20% of all euthyroid pregnant women are positive for thyroid antibodies (3). While complications of hypothyroidism or overt...
Screening for thyroid disorders in pregnancy

Subjects and methods

This is a prospective study carried out in Tehran from September 2013 to September 2014. In this study, 1600 pregnant women in their first trimester were selected, using a cluster sampling method from among those receiving prenatal care in centers under coverage of Shahid Beheshti University of Medical Sciences, which provides health services to over two-thirds of Tehran's population. A written informed consent form was obtained from all participants and the study was approved by the Ethical committee of the Research Institute of Endocrine Sciences. A comprehensive questionnaire including demographic, reproductive, medical and prenatal history was filled out during face-to-face interviews. A checklist including all potential risk factors, as recommended by the American Thyroid Association (27), was completed for all participants and physical exams including thyroid, weight, height, systolic and diastolic pressure. Overnight blood samples were collected, following centrifugation they were sent to the Research Institute of Endocrine Sciences of Shahid Beheshti University of Medical Sciences for thyroid hormonal assessment including thyroid (T₄), T-uptake, thyrotropin (TSH) and thyroid peroxidase antibody (TPOAb). Since free T₄ (FT₄) immunoassays may be influenced by pregnancy-related changes of serum thyroxin binding globulin and albumin, in a method-specific manner, FT₄ index (FT₄I) was used to assess FT₄ status (28).

Pregnant women, aged <18 years (n=52) and those with twin pregnancies (n=24) and those diagnosed with thyroid diseases (n=44) were excluded from this study. Gestational age was calculated according to the first day of their last menstrual cycle (LMP) (for women with regular cycles), and/or ultrasonography for those with irregular cycles or those who could not remember their LMP.

Using RIA and immunoradiometric assay (IRMA), T₄ and TSH were measured by commercial kits (Izotop Kit, Budapest co., Hungary) and the Gama-counter (Dream Gamma-10, Goyang-si, Gyeonggi-do, South Korea). T-uptake and TPOAb were measured by the enzyme immunoassay (ELISA) (Diaplus Kit, San Francisco, CA, USA) and immunoenzymometric assay (IEMA) (Monobind Kit, Costa Mesa, CA, USA), using a calibrated ELISA reader (Sunrise, Tecan Co., Salzburg, Austria). Inter and intra assay coefficients of variation for T₄, T-uptake, and TSH were measured by the Ethical committee of the Research Institute of Endocrine Sciences of Shahid Beheshti University of Medical Sciences for thyroid hormonal assessment including thyroid (T₄), T-uptake, thyrotropin (TSH) and thyroid peroxidase antibody (TPOAb). Since free T₄ (FT₄) immunoassays may be influenced by pregnancy-related changes of serum thyroxin binding globulin and albumin, in a method-specific manner, FT₄ index (FT₄I) was used to assess FT₄ status (28).

Pregnant women, aged <18 years (n=52), those with twin pregnancies (n=24) and those diagnosed with thyroid diseases (n=44) were excluded from this study. Gestational age was calculated according to the first day of their last menstrual cycle (LMP) (for women with regular cycles), and/or ultrasonography for those with irregular cycles or those who could not remember their LMP.

Using RIA and immunoradiometric assay (IRMA), T₄ and TSH were measured by commercial kits (Izotop Kit, Budapest co., Hungary) and the Gama-counter (Dream Gamma-10, Goyang-si, Gyeonggi-do, South Korea). T-uptake and TPOAb were measured by the enzyme immunoassay (ELISA) (Diaplus Kit, San Francisco, CA, USA) and immunoenzymometric assay (IEMA) (Monobind Kit, Costa Mesa, CA, USA), using a calibrated ELISA reader (Sunrise, Tecan Co., Salzburg, Austria). Inter and intra assay coefficients of variation for T₄, T-uptake, and TSH were measured by the Ethical committee of the Research Institute of Endocrine Sciences of Shahid Beheshti University of Medical Sciences for thyroid hormonal assessment including thyroid (T₄), T-uptake, thyrotropin (TSH) and thyroid peroxidase antibody (TPOAb). Since free T₄ (FT₄) immunoassays may be influenced by pregnancy-related changes of serum thyroxin binding globulin and albumin, in a method-specific manner, FT₄ index (FT₄I) was used to assess FT₄ status (28).

Pregnant women, aged <18 years (n=52), those with twin pregnancies (n=24) and those diagnosed with thyroid diseases (n=44) were excluded from this study. Gestational age was calculated according to the first day of their last menstrual cycle (LMP) (for women with regular cycles), and/or ultrasonography for those with irregular cycles or those who could not remember their LMP.

Using RIA and immunoradiometric assay (IRMA), T₄ and TSH were measured by commercial kits (Izotop Kit, Budapest co., Hungary) and the Gama-counter (Dream Gamma-10, Goyang-si, Gyeonggi-do, South Korea). T-uptake and TPOAb were measured by the enzyme immunoassay (ELISA) (Diaplus Kit, San Francisco, CA, USA) and immunoenzymometric assay (IEMA) (Monobind Kit, Costa Mesa, CA, USA), using a calibrated ELISA reader (Sunrise, Tecan Co., Salzburg, Austria). Inter and intra assay coefficients of variation for T₄, T-uptake, and TSH were measured by the Ethical committee of the Research Institute of Endocrine Sciences of Shahid Beheshti University of Medical Sciences for thyroid hormonal assessment including thyroid (T₄), T-uptake, thyrotropin (TSH) and thyroid peroxidase antibody (TPOAb). Since free T₄ (FT₄) immunoassays may be influenced by pregnancy-related changes of serum thyroxin binding globulin and albumin, in a method-specific manner, FT₄ index (FT₄I) was used to assess FT₄ status (28).

Pregnant women, aged <18 years (n=52), those with twin pregnancies (n=24) and those diagnosed with thyroid diseases (n=44) were excluded from this study. Gestational age was calculated according to the first day of their last menstrual cycle (LMP) (for women with regular cycles), and/or ultrasonography for those with irregular cycles or those who could not remember their LMP.

Using RIA and immunoradiometric assay (IRMA), T₄ and TSH were measured by commercial kits (Izotop Kit, Budapest co., Hungary) and the Gama-counter (Dream Gamma-10, Goyang-si, Gyeonggi-do, South Korea). T-uptake and TPOAb were measured by the enzyme immunoassay (ELISA) (Diaplus Kit, San Francisco, CA, USA) and immunoenzymometric assay (IEMA) (Monobind Kit, Costa Mesa, CA, USA), using a calibrated ELISA reader (Sunrise, Tecan Co., Salzburg, Austria). Inter and intra assay coefficients of variation for T₄, T-uptake, and TSH were measured by the Ethical committee of the Research Institute of Endocrine Sciences of Shahid Beheshti University of Medical Sciences for thyroid hormonal assessment including thyroid (T₄), T-uptake, thyrotropin (TSH) and thyroid peroxidase antibody (TPOAb). Since free T₄ (FT₄) immunoassays may be influenced by pregnancy-related changes of serum thyroxin binding globulin and albumin, in a method-specific manner, FT₄ index (FT₄I) was used to assess FT₄ status (28).

Pregnant women, aged <18 years (n=52), those with twin pregnancies (n=24) and those diagnosed with thyroid diseases (n=44) were excluded from this study. Gestational age was calculated according to the first day of their last menstrual cycle (LMP) (for women with regular cycles), and/or ultrasonography for those with irregular cycles or those who could not remember their LMP.

Using RIA and immunoradiometric assay (IRMA), T₄ and TSH were measured by commercial kits (Izotop Kit, Budapest co., Hungary) and the Gama-counter (Dream Gamma-10, Goyang-si, Gyeonggi-do, South Korea). T-uptake and TPOAb were measured by the enzyme immunoassay (ELISA) (Diaplus Kit, San Francisco, CA, USA) and immunoenzymometric assay (IEMA) (Monobind Kit, Costa Mesa, CA, USA), using a calibrated ELISA reader (Sunrise, Tecan Co., Salzburg, Austria). Inter and intra assay coefficients of variation for T₄, T-uptake, and TSH were measured by the Ethical committee of the Research Institute of Endocrine Sciences of Shahid Beheshti University of Medical Sciences for thyroid hormonal assessment including thyroid (T₄), T-uptake, thyrotropin (TSH) and thyroid peroxidase antibody (TPOAb). Since free T₄ (FT₄) immunoassays may be influenced by pregnancy-related changes of serum thyroxin binding globulin and albumin, in a method-specific manner, FT₄ index (FT₄I) was used to assess FT₄ status (28).

Pregnant women, aged <18 years (n=52), those with twin pregnancies (n=24) and those diagnosed with thyroid diseases (n=44) were excluded from this study. Gestational age was calculated according to the first day of their last menstrual cycle (LMP) (for women with regular cycles), and/or ultrasonography for those with irregular cycles or those who could not remember their LMP.
4.5, as sub-clinically hypothyroid, regardless of TPOAb status, whether positive or negative. Women with TSH levels <2.5 μIU/ml, FTI <1 and TPO antibodies <50 IU/ml (negative), were considered as isolated hypothyroxinemia and those with TSH levels <2.5 μIU/ml, FTI between 1 and 4.5 and TPO antibodies >50 IU/ml (positive), were considered as positive TPOAb euthyroid.

Statistical analysis

Continuous variables were checked for normality using the one-sample Kolmogorov-Smirnoff test. Categorical variables are expressed as percentages and were compared using Pearson’s χ² test. Distributions of variables between the two groups were compared using t test and expressed as mean ± s.d. Logistic regression was used to identify the association between each risk factor and thyroid dysfunction. Statistical analysis was performed by using SPSS software version 18.

Results

Demographic and reproductive characteristics of study participants are presented in Table 1. Mean ± s.d. of age, BMI and gestational age of the women were 27.4 ± 4.9 years, 25.2 ± 4.7 kg/m² and 11.4 ± 4.2 weeks respectively. Past history of thyroid disorders was given by 57 (3.9%) women (31 women with hypothyroidism, 18 with hyperthyroidism), but 8 women were unaware of the type of their disorder). Family history of thyroid disorders was reported by 168 (11.4%) women.

Using the predefined classification, 65.8% (n=974) had normal thyroid function and 34.2% (n=506) had thyroid disorders, including overt hyperthyroidism (0.7%, n=10), overt hypothyroidism (1.1%, n=17), subclinical hypothyroidism (30.1%, n=445), including positive TPOAb (5.5%) and TPOAb negative (24.6%). Overall, 31.2% (n=462) had hypothyroidism (1.1% with overt hypothyroidism and 30.1% subclinical). Finally, 8.9% (n=132) had positive TPOAb, 2.3% (n=34) being euthyroid, with positive TPOAb.

Table 2 presents the prevalence of each risk factor in women with and without thyroid dysfunction. The three most prevalent risk factors were age ≥30 years (30.7%), history of abortion (16.5%) and family history of thyroid disorders (11.4%).

In the low-risk group, mean BMI and gestational age of those women with thyroid disorders were significantly higher than those without disorders. In the high-risk group, mean age of women without thyroid disorders was significantly higher than those with the disorders. Thyroid disorders were identified in 39.6 and 27.4% of women in the high- and low-risk groups respectively (P<0.0001). Prevalence of abnormal thyroid tests was 64.4 and 35.6% in the high- and low-risk groups respectively.

Eight cases with hyperthyroidism were in the high-risk group and two were in the low-risk group; 88.2% (n=15) of cases with overt hypothyroidism were in the high-risk group and 11.8% (n=2) were in the low-risk one. Of cases with subclinical hypothyroidism, 60.9% (n=271) were in the high-risk group and 39.1% (n=174) were in the low-risk group.

Logistic regression analysis demonstrated 15 risk factors, previous history (Odds: 4.44, 95% CI: 2.51–7.84, P<0.001) or family history of thyroid disorders (Odds: 1.44, 95% CI: 1.04–1.99, P=0.031) was associated with thyroid dysfunction (Table 3).

Discussion

Using the targeted high-risk case finding approach for thyroid dysfunction overlooks about one out of every three pregnant women suffering from these disorders. Of all the risk factors considered for this approach, only past history (Odds: 4.44, 95% CI: 2.51–7.84) or family history of thyroid disorders (Odds: 1.44, 95% CI: 1.04–1.99) were associated with thyroid dysfunction.

Debate about the need for universal screening of thyroid dysfunction in pregnancy is ongoing. Despite lack of sufficient evidence that identification and treatment of pregnant women with subclinical hypothyroidism...
improves maternal or neonatal outcomes, the low cost
treatment and widespread availability of screening test
is causing the universal screening approach to have fast-
gaining popularity (29, 30).

In this study, we found that when potential risk
factors for thyroid disease are used, case finding misses
20.0% of those with hyperthyroidism, 11.8% of those with
overt hypothyroidism or 39.1% of those with subclinical
hypothyroidism. In agreement with our results, Vaidya
et al. (20) reported that about 30% of women with
hypothyroidism and 69% of women with hyperthyroid-
ism were overlooked using the targeted high-risk case
finding approach. Wang et al. (24) reported that a case
identification screening strategy failed to diagnose 81.6%
of pregnant women with hypothyroidism and 80.4% of
pregnant women with hyperthyroidism. In a retrospective
cohort study, Chang et al. (22) also reported that 80% of
women with high TSH levels could not be diagnosed using
the high-risk case finding approach. The Yang et al. (25)
study showed that using the high-risk case finding
strategy, all the women with overt hypothyroidism and
66.7% of women with overt hyperthyroidism were
identified in the first trimester, indicating that this
method is inefficient for identification of patients with
overt thyroid disorders. The Ohashi et al. (23) study also
showed that targeted high-risk case finding for diagnosis
of thyroid disorders in pregnant women identified only
10% of women with thyroid dysfunction, i.e. 90% of

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>With thyroid dysfunction</th>
<th>Without thyroid dysfunction</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women with previous history of thyroid dysfunction</td>
<td>39 (7.7)</td>
<td>18 (1.8)</td>
<td>57 (3.9)</td>
</tr>
<tr>
<td>Women currently receiving L-thyroxine replacement</td>
<td>5 (1.0)</td>
<td>2 (0.2)</td>
<td>7 (0.5)</td>
</tr>
<tr>
<td>Women treated with radioactive iodine</td>
<td>0</td>
<td>2 (0.2)</td>
<td>2 (0.1)</td>
</tr>
<tr>
<td>Women with prior therapeutic head or neck irradiation or prior thyroid surgery**</td>
<td>2 (0.4)</td>
<td>0</td>
<td>2 (0.1)</td>
</tr>
<tr>
<td>Women with a family history or autoimmune thyroid disease or hypothyroidism</td>
<td>70 (13.8)</td>
<td>98 (10.1)</td>
<td>168 (11.4)</td>
</tr>
<tr>
<td>Women with goiter</td>
<td>6 (1.2)</td>
<td>18 (1.8)</td>
<td>24 (1.6)</td>
</tr>
<tr>
<td>Women with thyroid antibodies, primarily thyroid peroxidase antibodies</td>
<td>134 (26.5)</td>
<td>0</td>
<td>132 (8.9)</td>
</tr>
<tr>
<td>Women with type 1 DM or other autoimmune disorders**</td>
<td>0</td>
<td>8 (0.8)</td>
<td>4 (0.3)</td>
</tr>
<tr>
<td>Women with a prior history of miscarriage or preterm delivery</td>
<td>80 (15.8)</td>
<td>164 (16.8)</td>
<td>244 (16.5)</td>
</tr>
<tr>
<td>Women with a prior history of preterm delivery</td>
<td>8 (3.0)</td>
<td>18 (3.3)</td>
<td>26 (1.8)</td>
</tr>
<tr>
<td>Women with infertility</td>
<td>22 (4.3)</td>
<td>44 (4.5)</td>
<td>66 (4.5)</td>
</tr>
<tr>
<td>Women with morbid obesity (BMI ≥40)</td>
<td>2 (0.4)</td>
<td>6 (0.7)</td>
<td>8 (0.5)</td>
</tr>
<tr>
<td>Women aged ≥30 years</td>
<td>150 (29.6)</td>
<td>304 (31.2)</td>
<td>454 (30.7)</td>
</tr>
</tbody>
</table>

**There was no pregnant woman with previous history of other autoimmune disorders or history of head/neck irradiation.

<table>
<thead>
<tr>
<th>Risk factors</th>
<th>Exp (B)</th>
<th>95% CI Exp (B)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous history of a thyroid disorder</td>
<td>4.44</td>
<td>2.51–7.84</td>
<td><0.001</td>
</tr>
<tr>
<td>Family history of a thyroid disorder</td>
<td>1.44</td>
<td>1.03–1.99</td>
<td>0.031</td>
</tr>
<tr>
<td>History of thyroid drug use</td>
<td>4.85</td>
<td>0.94–25.09</td>
<td>0.060</td>
</tr>
<tr>
<td>History of radioactive iodine therapy</td>
<td>0.00</td>
<td>0.00</td>
<td>0.999</td>
</tr>
<tr>
<td>Goiter</td>
<td>0.64</td>
<td>0.25–1.62</td>
<td>0.343</td>
</tr>
<tr>
<td>History of type 1 diabetes mellitus</td>
<td>0.00</td>
<td>0.00</td>
<td>0.999</td>
</tr>
<tr>
<td>History of miscarriage</td>
<td>0.93</td>
<td>0.69–1.24</td>
<td>0.613</td>
</tr>
<tr>
<td>History of preterm delivery</td>
<td>0.92</td>
<td>0.40–2.14</td>
<td>0.847</td>
</tr>
<tr>
<td>History of other autoimmune disorders</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Infertility</td>
<td>0.96</td>
<td>0.57–1.62</td>
<td>0.881</td>
</tr>
<tr>
<td>History of head/neck irradiation</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Morbid obesity (BMI ≥40)</td>
<td>0.64</td>
<td>0.13–3.18</td>
<td>0.585</td>
</tr>
<tr>
<td>Women aged ≥30</td>
<td>0.93</td>
<td>0.74–1.17</td>
<td>0.535</td>
</tr>
</tbody>
</table>
women with thyroid dysfunction were not identified. Ahmed *et al.* (21) also reported that considering the case finding approach introduced by The Endocrine Association, 34.5% of pregnant women with clinical or subclinical hypothyroidism were overlooked. These variations in results could be partly explained by using various thresholds for TSH, FTI and TPOAb, while we defined normal thyroid status as TSH <2.5 μIU/ml, FTI: 1–4.5 and TPO antibodies <50 IU/ml. Yang *et al.* (25) used cut-off values of 3.47 mU/l in the first trimester and 3.81 mU/l in the second trimester for TSH. Various prevalence of assumed risk factors for thyroid disorders (e.g. age and BMI) in different populations could partly explain these variations in results. In the current study, the average age was 27.4 ± 4.9 years, which differed to that (30.8 ± 4.7 years) of the Ohashi *et al.* study (23). In addition, these variations may be due to the differences in the iodine sufficiency status of regions, because in areas with severe iodine deficiency resulting in a higher prevalence of goiter, more women had the risk factor required for being eligible for the case targeted high-risk case finding approach.

There is no consensus on the risk factors that need to be included in a case finding approach. While American Thyroid Association and European societies guidelines considered age ≥ 30 years as a risk factor and suggested screening all women over the age of 30 years, there is insufficient evidence on the association between age and abnormal thyroid function (31). It has been shown that the addition of women age ≥30 years increased the proportion of women identified in a case finding approach from 55.3 to 85.6% (26). It seems that due to wide differences in the prevalence of these risk factors in various communities (32, 33), thyroid screening policies need to be evidence-based for each society (27).

The current study showed that considering the relatively low prevalence of risk factors among Iranian pregnant women, over one-third of women with thyroid disorders (35.6%) are missed by not using universal screening. However, those overlooked women mostly had subclinical thyroid disorders (34.4%, n = 174) but current data on the impact of treating these women are limited and conflicting. While some studies demonstrate subclinical hypothyroidism results in adverse outcomes of pregnancy (3, 13, 34, 35, 36, 37, 38) and intervention with L-thyroxine (L-T4) may prevent these complications (39, 40). However, this has not been reported by others (41, 42).

The present study showed that among the risk factors for thyroid dysfunction, past and family histories of thyroid disorders are significant prognostic factors for prediction of thyroid dysfunction. Pregnant women with a history of thyroid disorders had 4.5 (95% CI) times more chance of having thyroid dysfunction, than those without this history, and a person with a family history of thyroid disorders has a 1.5 times higher chance of having thyroid dysfunction (95% CI) compared to women without this history. In agreement with our results, Dehghani Zahedani *et al.* (2011) and Feki *et al.* (2008) reported predictive ability of past history of thyroid diseases for thyroid disorders in pregnant women, but they demonstrated no significant relationship between a positive family history of thyroid dysfunction and thyroid disorders in pregnancy (41, 42), which was reported by Vaidya *et al.* (20) and Bulmus *et al.* (43). Data also shows that comprehensive assessment of medical and family history of pregnant women could identify 6.7% of thyroid diseases among the pregnant women (43).

The main strength of this study is its methodology, because it is a study conducted mainly on pregnant Iranian women in their first trimester. Comprehensive thyroid assessment including history, physical exam and thyroid function tests were done for all study participants, while in some other studies these have not been measured for all participants (20, 23, 44). However, the results of our study cannot be generalized to other areas with different statuses of iodine sufficiency or other underlying risk factors.

In conclusion, targeted high-risk case finding approach overlooks about one-third of Iranian pregnant women suffering from some type of thyroid dysfunction. While universal screening for thyroid diseases in pregnancy seems to be reasonable considering the low cost treatment and widespread availability of screening test, as current data on the impact of treating subclinical hypothyroidism are limited and conflicting, it cannot yet be recommended. If ongoing prospective trials provide evidence on the efficacy of treating subclinical hypothyroidism in pregnancy, the targeted high-risk case finding approach will be proven inefficient, especially in populations with a low prevalence of presumed risk factors.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

European Journal of Endocrinology
Acknowledgements
We are indebted to each of the study participants for the substantial time and effort contributed to this study. Acknowledgments are also due to the staff of the prenatal care center, under coverage of Shahid Beheshti University of Medical Sciences. My special thanks to Mrs N Shiva for editing the manuscript and personnel of the Research Endocrine Laboratory. This article has been extracted from a PhD thesis and has been done with the financial support of Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences.

References

1 Carney LA, Quinlan JD & West JM. Thyroid disease in pregnancy. American Family Physician 2014 89 273–278.
17 Surks MI, Ortiz E, Daniels GH, Sawin CT, Cobin RH, Franklyn JA, Hershman JM, Burman KD, Denke MA et al. Subclinical thyroid disease: scientific review and guidelines for diagnosis and management. Journal of the American Medical Association 2004 291 228–238. (doi:10.1001/jama.291.2.228)
29 Altomare M, La Vignera S, Asero P, Recupero D, Condorelli RA, Scrollo P, Gulisano A, Magro E, Turino D, Tumino S et al. High prevalence of

www.eje-online.org

