Screening for mutations in 17β-hydroxysteroid dehydrogenase and androgen receptor in women presenting with partially virilised 46,XY disorders of sex development

Niamh Phelan1, Emma L Williams2,4, Stefanie Cardamone3, Marilyn Lee1, Sarah M Creighton3, Gill Rumsby2 and Gerard S Conway1

Departments of 1Endocrinology, 2Clinical Biochemistry and 3Gynaecology, University College London Hospitals, 250 Euston Road, London NW1 2BU, UK and 4Clinical Biochemistry, Imperial College Healthcare, London, UK

Correspondence should be addressed to G S Conway
Email g.conway@ucl.ac.uk

Abstract

Context and objective: The precise diagnosis of partially virilised women with 46,XY disorders of sex development (DSD) is often obscure. In practice, this group often comes under the poorly defined, clinically based label of partial androgen insensitivity syndrome (PAIS). In a previous study, we found that 5α-reductase 2 (SRD5A2) mutations occurred in 43% of women in this subgroup. We expand this work to include biochemical and genetic screening for 17β-hydroxysteroid dehydrogenase (HSD17B3) and androgen receptor (AR) mutations.

Methods: Analysis of serum androgens (androstenedione and testosterone) and genetic analyses for HSD17B3 and AR were performed in 42 women from 36 pedigrees with partially virilised 46,XY DSD in whom SRD5A2 deficiency had been excluded by urine steroid profiling.

Results: Out of 36 unrelated women, 14 (38%) were found to have HSD17B3 mutations and one (2.7%) to have an AR defect. Six novel pathogenic HSD17B3 mutations were identified: three splice site mutations and three missense changes. Seven patients with HSD17B3 deficiency tested before gonadectomy had basal testosterone/androstenedione (T/A) ratio >0.8 (sensitivity 100% and specificity 91%).

Conclusions: HSD17B3 deficiency is prevalent in the adolescent and adult 46,XY female DSD population and is often associated with lesser degrees of virilisation compared with those with 5α-reductase deficiency. This diagnosis should be considered for individuals labelled as PAIS, particularly, but not exclusively, those who present with virilisation at puberty or primary amenorrhoea. Before gonadectomy, T/A ratio is useful to aid diagnosis, but after gonadectomy sequencing of HSD17B3 must be performed to confirm the diagnosis.

Introduction

In clinics for adults with disorders of sex development (DSD), the precise genetic diagnosis of partially virilised women with 46,XY DSD is often unknown. In practice, this group often comes under a poorly defined, clinically based label of partial androgen insensitivity syndrome (PAIS) (1). Candidate genes for the phenotype of women with a 46,XY karyotype, absent uterus and a degree of virilisation include mutations in genes encoding the androgen receptor (AR), steroidogenic factor 1 (NR5A1), 5α-reductase-2 (SRD5A2) and 17β-hydroxysteroid dehydrogenase 3 (HSD17B3) enzymes. The clinical presentation depends on the amount of androgen produced, the degree of end-organ responsiveness and the timing of exposure of the external genitalia to androgens. The spectrum of phenotype in this group spans those with micropenis, severe hypospadias and a bifid scrotum (2).
to an appearance more consistent with complete androgen insensitivity (CAIS), where the appearance is that of a female phenotype with a mild degree of clitoromegaly.

The 17β-hydroxysteroid dehydrogenase type 3 isoenzyme catalyses the conversion of the weak androgen substrate androstenedione into the more biologically active testosterone in the testis, which is essential for normal fetal development of male genitalia (3, 4). Affected individuals have testes and normally developed Wolfian duct derivatives, but show undervirilisation of the external genitalia, which often appear female with clitoromegaly, a blind-ending vagina, and at times, labial fusion. They are, therefore, often raised as females (4). Virilisation tends to occur at puberty, as a consequence of the peripheral conversion of androstenedione by other 17β-HSD isoenzymes (5) including the extra-testicular 17β-HSD5 (6, 7) and also because some have residual, albeit reduced, HSD17B3 function (8). The biochemical hallmark of HSD17B3 deficiency in the paediatric setting is the finding of an elevated serum androstenedione concentration and a low serum testosterone/androstenedione (T/A) ratio of <0.8 following an human chorionic gonadotrophin (hCG) stimulation test (9). More than 40 variants have been described in HSD17B3 (http://www.hgmd.cf.ac.uk, accessed January 2015). HSD17B3 deficiency is inherited as an autosomal recessive trait.

Disorders of the AR commonly result in CAIS and a female phenotype with no virilisation at puberty, but AR mutations causing partial functional deficits have also been found in PAIS (1, 10), where missense mutations rather than deletions or other null mutations predominate (10, 11). More than 1000 AR mutations have been described to date (12).

Diagnostic criteria for women with partially virilised 46,XY DSD presenting in an older age group are not established and it is difficult to make a biochemical diagnosis in adults after gonadectomy, especially when the original endocrine data are often not available (13). In these circumstances, genetic testing is required. In a previous study, we found that SRD5A2 mutations occurred in 43% of women in this clinical subgroup (14). We now extend this work by presenting the results of screening for HSD17B3 and AR mutations in partially virilised women with 46,XY DSD of unknown aetiology. Clinical and biochemical characteristics are described. In addition, we have collated results from all XY DSD patients with a partially virilised phenotype who have attended clinics at University College London Hospitals (UCLH) in order to document the frequency of each disorder in an adult DSD setting.

Subjects and methods

Subjects

Women attending DSD clinics at UCLH were recruited with prerequisite clinical characteristics of an absent uterus, partial virilisation and non-mosaic 46,XY genotype. In those subjects who had presented originally in the paediatric setting, the earlier diagnostic work-up details were not always available in referral letters and historic documents. In addition, some were diagnosed in childhood but were unaware of their diagnoses until later in life. In these cases details of earlier childhood presentations were often unavailable. Prader staging at birth was estimated from available information and cannot be considered perfectly accurate, but is included to convey an idea of virilisation at birth. All subjects had urinary steroid profiles performed to exclude SRD5A2 deficiency as described previously (14).

From a population of 87 women with this phenotype observed at this centre, 22 were lost to follow-up or did not consent to genetic testing, leaving a study group of 65 subjects.

Study group subset for screening of HSD17B3 and AR genes

Of the 65 subjects, 21 had established genetic diagnoses made either from previous screening of this cohort within our centre or before referral to clinic: 16 with mutations in SRD5A2, two with mutations in HSD17B3, one with AR defect, one with a confirmed NR5A1 mutation and one with Denys–Drash syndrome. Two additional patients were excluded; one with a family history of NR5A1 mutation and one with an 45,X;46,XY mosaic karyotype, thus leaving a study group of 42 women from 36 pedigrees with 46,XY DSD of unknown cause. The median age (range) at entry to the study was 27 (15–58) years.

The project was approved by the ethics committee of UCLH and informed consent was obtained from all subjects.

Methods: HSD17B3 and AR mutation screening

DNA was extracted from whole blood collected into EDTA. HSD17B3 was amplified in four fragments containing exons 1–2, 3–5, 6–9, and 10–11 and AR in eight, including three overlapping fragments for exon 1, exons 2–5 amplified separately, then exons 6–8 in a single fragment, followed by unidirectional exon sequencing of purified

Subjects and methods

Subjects

Women attending DSD clinics at UCLH were recruited with prerequisite clinical characteristics of an absent uterus, partial virilisation and non-mosaic 46,XY genotype. In those subjects who had presented originally in the paediatric setting, the earlier diagnostic work-up details were not always available in referral letters and historic documents. In addition, some were diagnosed in childhood but were unaware of their diagnoses until later in life. In these cases details of earlier childhood presentations were often unavailable. Prader staging at birth was estimated from available information and cannot be considered perfectly accurate, but is included to convey an idea of virilisation at birth. All subjects had urinary steroid profiles performed to exclude SRD5A2 deficiency as described previously (14).

From a population of 87 women with this phenotype observed at this centre, 22 were lost to follow-up or did not consent to genetic testing, leaving a study group of 65 subjects.

Study group subset for screening of HSD17B3 and AR genes

Of the 65 subjects, 21 had established genetic diagnoses made either from previous screening of this cohort within our centre or before referral to clinic: 16 with mutations in SRD5A2, two with mutations in HSD17B3, one with AR defect, one with a confirmed NR5A1 mutation and one with Denys–Drash syndrome. Two additional patients were excluded; one with a family history of NR5A1 mutation and one with an 45,X;46,XY mosaic karyotype, thus leaving a study group of 42 women from 36 pedigrees with 46,XY DSD of unknown cause. The median age (range) at entry to the study was 27 (15–58) years.

The project was approved by the ethics committee of UCLH and informed consent was obtained from all subjects.

Methods: HSD17B3 and AR mutation screening

DNA was extracted from whole blood collected into EDTA. HSD17B3 was amplified in four fragments containing exons 1–2, 3–5, 6–9, and 10–11 and AR in eight, including three overlapping fragments for exon 1, exons 2–5 amplified separately, then exons 6–8 in a single fragment, followed by unidirectional exon sequencing of purified
products, with suitably placed internal primers to sequence exons and intron–exon boundaries, on an ABI 310 genetic analyser. Numbering of mutations was based on reference sequence NM_000197.1 (HSD17B3) and NM_000442.2 (AR), with nucleotide +1 as the A of the ATG translation initiation codon. In silico analysis of novel changes was performed using SIFT ((15), http://sift.jcvi.org/), Polyphen-2 ((16), http://genetics.bwh.harvard.edu/pph2/), and MutationTaster ((17), http://www.mutationtaster.org/).

Methods: endocrine evaluation

Serum androstenedione (A) and testosterone levels (T) (nmol/l) were measured by standard immunoassays and collected for comparison where possible. Only patients with levels taken before gonadectomy were included. Basal levels were collected from post-pubertal patients without hCG stimulation and the T/A ratio was calculated.

Methods: collective partially virilised XY DSD population

Collated data from the entire clinic population of partially virilised XY DSD patients, including male and SRD5A2 patients, were reviewed in order to document proportions of diagnostic subgroups according to genetic diagnosis for this broader phenotype. These data were compared with published reference series.

Results

From a study group of 42 individuals from 36 pedigrees, 18 subjects from 14 pedigrees (38%) were found to have HSD17B3 mutations and one (2.7%) was found to have an AR mutation.

Cohort with HSD17B3 mutations: clinical, genetic, and biochemical characteristics

Clinical details of all patients identified with HSD17B3 mutation are outlined in Table 1. The median age of diagnosis (range) of the cohort of 18 individuals with HSD17B3 mutations was 14 (0.5–18) years. The median age (range) of gonadectomy was 14.5 (1–23). At birth, 14/18 subjects were reported to have normal female appearance of the external genitalia with no signs of virilisation and the remaining four had mild ambiguity with labial masses in one subject. Eight patients had palpable inguinal gons or had previous surgical treatment for inguinal hernia. Gonadectomy was performed after the age of 10 years in 14 subjects, of whom four did not report virilisation at pubertal age.

Diagnostic labels for this group at the time of referral to our service were diverse; six subjects were referred with no defined diagnosis, three with PAIS, three with vanishing testes syndrome (VTS), three with unspecified AIS, one with CAIS and one as an undefined testosterone biosynthetic defect.

Splice mutations accounted for 16/28 (57%) of pathological variants in HSD17B3 of which c.[277+4A>T] was the most common, occurring in 11 unrelated alleles (39%), all from Caucasian patients. Three novel splice mutations were found, c.[201+1G>A] and c.[202–1G>A] in the splice donor and acceptor sites, respectively, of intron 2, and c.[277+5G>A] in intron three. All three were predicted to affect splicing. The remainder of the mutations were missense changes including the previously described changes p.Ala56Thr, p.Asn130Ser, p.Met197Lys, p.Ala203Val, p.Val205Glu and p.Pro282Leu. Three novel variants, c.203T p.Met197Lys, p.Ala203Val, p.Val205Glu and p.Pro282Leu, were also found, all of which were predicted by in silico analysis to be disease causing. The single exception was the SIFT prediction for p.Val225Met that implied a degree of tolerance for the change (score 0.06, cut-off <0.05 for deleterious change). This variant was found in conjunction with a known splice site mutation, c.277+4A>T, in intron 3. A single patient was found to have a known pathogenic variant, c.1174C>T (p.Pro392Ser) in AR.

There were no apparent phenotype/genotype associations among those with mutations in HSD17B comparing splice site with missense mutations (Table 1). There was no difference in phenotype between those with 17HSDB3 mutations and the remaining 23 of unknown aetiology (data not shown).

Serum testosterone and androstenedione results were available in seven post-pubertal patients before gonadectomy. Results were also available for eight patients with SRD5A2 deficiency as well as two patients with 46,XY DSD of unknown aetiology. The average basal T/A ratio for all cases of HSD17B3 deficiency was 0.3 (0.18–0.55). A cut point for the T/A ratio of 0.8 identified all cases with HSD17B3 deficiency with a specificity of 91% (Fig. 1). The single false-positive subject was found to have a degree of testicular failure as evidenced by a serum FSH level of 26.6 mmol/l and severe atrophy on gonadal histology following gonadectomy.
<table>
<thead>
<tr>
<th>Family/patient no.</th>
<th>Ethnicity</th>
<th>Consanguinity</th>
<th>Clinical summary</th>
<th>Age</th>
<th>Previous diagnosis</th>
<th>Prader stage</th>
<th>Age</th>
<th>Virilised at puberty</th>
<th>HSD17B3 mutation nucleotide/amino acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSD 1/1</td>
<td>Pakistani</td>
<td>Yes</td>
<td>Hirsutism, clitoromegaly, breaking voice, palpable gonads</td>
<td>12</td>
<td>None</td>
<td>0/1</td>
<td>12</td>
<td>Yes</td>
<td>p.[Ala56Thr]</td>
</tr>
<tr>
<td>HSD 2/2</td>
<td>Pakistani</td>
<td>Yes</td>
<td>Primary amenorrhoea</td>
<td>15</td>
<td>VTS</td>
<td>0</td>
<td>23</td>
<td>Yes</td>
<td>c.[201 + 1G>A][c.277 + 5G>A] splice;splice</td>
</tr>
<tr>
<td>HSD 2/3</td>
<td>Pakistani</td>
<td>Yes</td>
<td>Sister of HSD2, screened after sister diagnosed, clitoromegaly noted</td>
<td>14</td>
<td>VTS</td>
<td>0</td>
<td>17</td>
<td>Yes</td>
<td>c.[201 + 1G>A][c.277 + 5G>A] splice;splice</td>
</tr>
<tr>
<td>HSD 2/4</td>
<td>Pakistani</td>
<td>Yes</td>
<td>Sister of HSD2, screened after sister diagnosed, primary amenorrhoea, hirsutism, clitoromegaly</td>
<td>14</td>
<td>VTS</td>
<td>0</td>
<td>16</td>
<td>Yes</td>
<td>c.[201 + 1G>A][c.277 + 5G>A] splice;splice</td>
</tr>
<tr>
<td>HSD 3/5</td>
<td>Caucasian</td>
<td>Unknown</td>
<td>Primary amenorrhoea</td>
<td>18</td>
<td>None</td>
<td>0</td>
<td>18</td>
<td>Yes</td>
<td>c.[201 + 1G>A][c.277 + 5G>A] splice;splice</td>
</tr>
<tr>
<td>HSD 3/6</td>
<td>Caucasian</td>
<td>Unknown</td>
<td>Sister of HSD5, screened after sister diagnosed</td>
<td>10</td>
<td>None</td>
<td>0</td>
<td>12</td>
<td>No</td>
<td>c.[201 + 1G>A][c.277 + 5G>A] splice;splice</td>
</tr>
<tr>
<td>HSD 4/7</td>
<td>Caucasian</td>
<td>Unknown</td>
<td>Abdominal pain</td>
<td>7</td>
<td>CAIS</td>
<td>0</td>
<td>7</td>
<td>NA</td>
<td>c.[201 + 1G>A][c.277 + 5G>A] splice;splice</td>
</tr>
<tr>
<td>HSD 5/8</td>
<td>Caucasian</td>
<td>No</td>
<td>Clitoromegaly</td>
<td>11</td>
<td>PAIS</td>
<td>0/1</td>
<td>11</td>
<td>Yes</td>
<td>c.[201 + 1G>A][c.277 + 5G>A] splice;splice</td>
</tr>
<tr>
<td>HSD 5/9</td>
<td>Caucasian</td>
<td>No</td>
<td>Sister of HSD8, screened after sister diagnosed, hooded clitoris noted</td>
<td>6</td>
<td>PAIS</td>
<td>0/1</td>
<td>9</td>
<td>NA</td>
<td>c.[201 + 1G>A][c.277 + 5G>A] splice;splice</td>
</tr>
<tr>
<td>HSD 6/10</td>
<td>Caucasian</td>
<td>Yes</td>
<td>Primary amenorrhoea, clitoromegaly noted</td>
<td>16</td>
<td>CAIS</td>
<td>0</td>
<td>18</td>
<td>No</td>
<td>c.[201 + 1G>A][c.277 + 5G>A] splice;splice</td>
</tr>
<tr>
<td>HSD 7/11</td>
<td>Caucasian</td>
<td>No</td>
<td>Primary amenorrhoea, hirsutism, no breast development</td>
<td>16</td>
<td>PAIS</td>
<td>0</td>
<td>17</td>
<td>No</td>
<td>c.[201 + 1G>A][c.277 + 5G>A] splice;splice</td>
</tr>
<tr>
<td>HSD 8/12</td>
<td>Caucasian</td>
<td>No</td>
<td>Primary amenorrhoea, hirsutism, deep voice, minimal breast development</td>
<td>15</td>
<td>PAIS</td>
<td>0</td>
<td>15</td>
<td>No</td>
<td>c.[201 + 1G>A][c.277 + 5G>A] splice;splice</td>
</tr>
<tr>
<td>HSD 9/13</td>
<td>Caucasian</td>
<td>No</td>
<td>Clitoromegaly</td>
<td>14</td>
<td>None</td>
<td>0</td>
<td>14</td>
<td>Yes</td>
<td>c.[201 + 1G>A][c.277 + 5G>A] splice;splice</td>
</tr>
<tr>
<td>HSD 10/14</td>
<td>Afghan</td>
<td>Yes</td>
<td>Clitoromegaly, deepening of voice, hirsutism</td>
<td>12</td>
<td>None</td>
<td>0</td>
<td>13</td>
<td>Yes</td>
<td>c.[201 + 1G>A][c.277 + 5G>A] splice;splice</td>
</tr>
<tr>
<td>HSD 11/15</td>
<td>Caucasian</td>
<td>No</td>
<td>Primary amenorrhoea, hirsutism, clitoromegaly noted</td>
<td>18</td>
<td>PAIS</td>
<td>0</td>
<td>20</td>
<td>Yes</td>
<td>c.[201 + 1G>A][c.277 + 5G>A] splice;splice</td>
</tr>
<tr>
<td>HSD 12/16</td>
<td>Caucasian</td>
<td>No</td>
<td>Bilateral labial masses</td>
<td>0.5</td>
<td>Testosterone biosynthetic defect</td>
<td>1</td>
<td>1</td>
<td>NA</td>
<td>c.[201 + 1G>A][c.277 + 5G>A] splice;splice</td>
</tr>
<tr>
<td>HSD 13/17</td>
<td>Caucasian</td>
<td>No</td>
<td>Bilateral inguinal hernias</td>
<td>5</td>
<td>AIS</td>
<td>0</td>
<td>5(R)/10(L)</td>
<td>NA</td>
<td>c.[201 + 1G>A][c.277 + 5G>A] splice;splice</td>
</tr>
<tr>
<td>HSD 14/18</td>
<td>Caucasian</td>
<td>No</td>
<td>Primary amenorrhoea, deep voice, Adam's apple, clitoromegaly noted</td>
<td>17</td>
<td>None</td>
<td>0</td>
<td>17</td>
<td>Yes</td>
<td>c.[201 + 1G>A][c.277 + 5G>A] splice;splice</td>
</tr>
<tr>
<td>AR 1/1</td>
<td>African</td>
<td>Unknown</td>
<td>Bilateral inguinal hernias, genital ambiguity</td>
<td>2</td>
<td>AIS</td>
<td>1/2</td>
<td>2</td>
<td>NA</td>
<td>c.[201 + 1G>A][c.277 + 5G>A] splice;splice</td>
</tr>
</tbody>
</table>

HSD, 17β-hydroxysteroid dehydrogenase deficiency; AR, androgen receptor; Dx, diagnosis; Gx, gonadectomy; AIS, androgen insensitivity syndrome; PAIS, partial androgen insensitivity syndrome; CAIS, complete androgen insensitivity syndrome; VTS, vanishing testes syndrome; NA, information not available.
Collective partially virilised XY DSD population

Collated data indicate the prevalence of genetically confirmed causes of partially virilised XY, DSD in all patients attending adult clinics at UCLH. We present a breakdown of diagnostic groups in Fig. 2A. For comparison, we also demonstrate amalgamated data from four predominantly paediatric reports (1, 10, 18, 19) (Fig. 2B).

Discussion

In this study, we have demonstrated that a significant proportion (38%) of unrelated 46,XY DSD females with unknown diagnosis have mutations predicted to cause HSD17B3 deficiency and that this diagnosis should be considered for individuals labelled as PAIS, particularly, but not exclusively, those that virilise post-puberty or those who present with primary amenorrhoea. In this study, six novel pathological variants in HSD17B3 were identified, three of which are splice site mutations. The most common mutation in our cohort was c.277+4A>T described previously (4). This mutation was restricted to Caucasian patients but has been described in other ethnic groups (20). This mutation is known to lead to exon skipping (9). Mutations in AR were unexpectedly rare (one case) in this adult cohort compared with paediatric series (1, 10, 11).

Compared with our population with SRD5A2 deficiency, women with HSD17B3 deficiency were less virilised. For instance, in contrast to those with SRD5A2 deficiency, none of the subjects in this study were raised as males or underwent a change in sex identity from female to male (14). Out of 14 individuals, four (29%) with SRD5A2 deficiency were classified as Prader stage 0-1 compared with 18/18 (100%) of those with HSD17B3 deficiency. Out of 11 individuals, 10 (91%) with SRD5A2 deficiency who retained their gonads past the age of ten had some degree of virilisation at puberty compared with 10/14 (71%) of those with HSD17B3 deficiency.

Out of 14 individuals, nine (64.3%) with SRD5A2 deficiency were of South Asian descent compared with 5/18 (28%) of those with HSD17B3 deficiency. In families in which the data were known, parental consanguinity was present in 12/21 (57%) of pedigrees with SRD5A2 mutations and 4/12 (33%) of those with HSD17B3 mutations.

Boehmer et al. (9) described the T/A ratios in cases of HSD17B3 deficiency following stimulation where the mean ratio was 0.4. They conclude that a T/A ratio

European Journal of Endocrinology
Clinical Study
N Phelan and others
HSD17B3 and AR mutations in DSD

Figure 1
Basal serum testosterone/androstenedione (nmol/l) ratio from women with partially virilised 46,XY DSD comparing those with HSD17B3 deficiency (solid circles), 5α reductase deficiency (open circles) with two of unknown aetiology after screening for these conditions ('x') with case numbers in ascending order for the ratio. Only post-pubertal women with gonads in situ are shown. The dotted line indicates the upper border for the ratio based on hCG stimulation test in children (9).

Figure 2
(A) Diagnostic frequency in 75 partially virilised patients with 46,XY DSD at University College London Hospital and (B) amalgamated data for paediatric cohorts (1, 10, 18, 19). HSD17B3, 17β-hydroxysteroid dehydrogenase 3; SRD5A2, 5α-reductase 2; AR, androgen receptor; NR5A1, steroidogenic factor 1; WT1, Wilms tumour suppressor gene; LHCGR, luteinizing hormone/choriogonadotropin receptor; CYP17A1, cytochrome P450 17A1.
below 0.8 was able to discriminate those with HSD17B3 deficiency from controls and those with AR mutation. In adults with HSD17B3 deficiency in whom the gonads remain in situ, the T/A ratio can similarly be applied (21, 22). In our series, the basal T/A ratio of 0.8 identified all seven cases of HSD17B3 deficiency in whom we had samples before gonadectomy with complete separation from those with SRD5A2 deficiency (Fig. 1). From this figure, it can be observed that one subject with normal gene sequence for both HSD17B3 and AR was found to have a T/A ratio below 0.8, possibly reflecting a degree of testicular failure as reported by other authors (23). Therefore, with the stipulation of including only subjects with normal serum FSH concentrations, an unstimulated T/A ratio below 0.8 in post-pubertal patients before gonadectomy is 100% sensitive and specific in identifying those with HSD17B3 deficiency and can be used to guide mutational analysis.

Testosterone and androstenedione were measured by routine automated immunoassay. As the world moves to gas chromatography coupled with mass spectrometry (GC–MS) or liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) as the gold standard methods for measuring androgens, it will be interesting to determine whether such methodology alters the utility of T/A ratio in this group of patients (24).

The true incidence of HSD17B3 deficiency is unknown but has been reported to range from one in 200–300 in Arabs in Gaza, among whom the intermarriage rate is high (25), to one in 147 000 in the Dutch population (9). The prevalence of HSD17B3 mutation in an adult 46,XY female DSD clinic has not been reported previously, but the prevalence in newborns has been reported to be approximately one in 150 000 (26).

Figure 2A presents collated data of 75 patients, both male and female, who have attended the clinics at UCLH with partially virilised XY DSD and in whom a genetic diagnosis has been sought. HSD17B3 and SRD5A2 enzyme deficiencies account for the majority of patients in our adult cohort (27 and 31% respectively) with only a small proportion attributed to an AR defect (7%). In contrast, AR mutations have been found to predominate in 46,XY DSD cohorts of predominantly paediatric populations. For example, in the Cambridge DSD database, AR mutations were found in 28% of subjects with PAIS analysed by gene sequencing (11). A study from our Dutch colleagues reported that 13/18 cases previously thought to have AIS were ultimately found to have mutations in HSD17B3 (9).

Conclusions

HSD17B3 and SRD5A2 deficiencies are relatively common and mutations in AR rare in an adult 46,XY female DSD population. A diagnosis of HSD17B3 deficiency should be considered, particularly in those patients presenting with primary amenorrhoea and/or milder degrees of virilisation. In a post-pubertal patient with intact gonads, an elevated androstenedione level and low basal T/A ratio is suggestive of HSD17B3 deficiency but requires confirmation by genetic testing. However, the utility of the T/A ratio is diminished in the adult population as many will present following gonadectomy. Definitive diagnosis is of benefit to provide genetic counselling to affected families. Additionally, the natural history of this group of disorders remains largely unknown and the delineation of genetically defined subgroups will allow for the collection of robust long-term outcome data to guide clinical care.
Declaration of interest
The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding
This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

References