Pathogenesis of type 2 diabetes in South Asians
Leontine E H Bakker1,*, Maria A Sleddering1,*, Jan W Schoones2, A Edo Meinders3 and Ingrid M Jazet1
1Department of General Internal Medicine and Endocrinology and 2Walaeus Library, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
(Correspondence should be addressed to L E H Bakker; Email: l.e.h.bakker@lumc.nl)
*(L E H Bakker and M A Sleddering contributed equally to this work.)

Abstract
The risk of developing type 2 diabetes mellitus (T2DM) is exceptionally high among both native and migrant South Asians. T2DM occurs more often and at a younger age and lower BMI, and the risk of coronary artery and cerebrovascular disease, and renal complications is higher for South Asians compared with people of White Caucasian descent. The high prevalence of T2DM and its related complications in South Asians, which comprise one-fifth of the total world’s population, poses a major health and socioeconomic burden. The underlying cause of this excess risk, however, is still not completely understood. Therefore, gaining insight into the pathogenesis of T2DM in South Asians is of great importance. The predominant mechanism, in this ethnicity seems to be insulin resistance (IR) rather than an impaired β-cell function. In this systematic review, we describe several possible mechanisms that may underlie or contribute to the increased IR observed in South Asians.

Introduction
The worldwide prevalence of type 2 diabetes mellitus (T2DM) increases, particularly in South Asian countries, and especially in India, which currently has the highest global number of diabetes patients, with an estimated prevalence of up to 16.8% in urban areas (1, 2, 3, 4). Similar prevalence rates have also been reported in migrants of South Asian descent (India, Pakistan, Bangladesh, Nepal, and Sri Lanka) and in the USA, Canada, and various European countries (5, 6, 7, 8). In The Netherlands, South Asians mostly consist of Hindustani Surinamese who migrated from Surinam, a former Dutch colony in South America, and whose ancestors came from the Indian subcontinent about a century ago. Hindustani Surinamese have the highest T2DM prevalence of all ethnic minorities living in The Netherlands (9). An age-standardized prevalence rate of T2DM of 26.7% for this group has been reported, compared with 5.5% in ethnic Dutch (10) (Table 1).

In addition to the increased prevalence, South Asians develop diabetes at a much younger age than White Caucasians and have an increased incidence of retinopathy, microalbuminuria, and end-stage renal disease (11, 12, 13). Furthermore, South Asians have an increased risk of developing coronary artery and cerebrovascular disease, and a 50% higher age-adjusted mortality rate from coronary heart disease (8).

Uncovering the underlying mechanisms involved in the higher prevalence of T2DM in South Asians is very relevant, as they represent over 20% of the world’s population. In this review, we discuss the available literature on potential pathophysiological mechanisms responsible for the increased prevalence of T2DM in South Asians compared with White Caucasians.

Methods
The literature was searched using international databases: PubMed (1949 to July 2013), EMBASE (OVID-version, 1980 to July 2013), Web of Science (1945 to July 2013), and the Cochrane Library (1990 to July 2013). Terms used were ‘South Asian’ or ‘Indo Asian’, combined with several keywords related to diabetes and its risk factors (i.e. T2DM, obesity, metabolic syndrome, insulin resistance (IR), insulin secretion, body fat, liver fat, skeletal muscle, mitochondrial dysfunction, endothelial dysfunction, adipokines, and inflammation). References were limited to studies on humans, written in English or Dutch. See the Supplementary Methods in the section on supplementary data given at the end of this article for the complete literature search.

T2DM in South Asians
Pathogenesis
T2DM is a chronic, multifactorial disease characterized by a combination of IR and impaired insulin secretion...
compared with different ethnic populations (16, 18, 21), insulin sensitivity (up to almost 50%) in South Asians of all age groups and relatively normal BMI show lower euglycemic clamp studies performed in men and women young age (37, 38). Insulinemia are predominant findings starting from a resemble Pima Indians, in whom also IR and hyper-

23, 24, 25, 33, 34, 35, 36). Thus, South Asians seem to South Asians (31, 32). Moreover, hyperinsulinemic euglycemic clamp studies performed in men and women of all age groups and relatively normal BMI show lower insulin sensitivity (up to almost 50%) in South Asians compared with different ethnicities (16, 17, 19, 20, 23, 24, 25, 28, 31, 32). The response to an insulin tolerance test is also worse in South Asians (31, 32). In a large study of the UK Prospective Diabetes Study (UKPDS) on 5098 newly diagnosed T2DM patients (82% White Caucasians, 10% South Asians, and 8% Afro-Caribbeans), β-cell function, measured with homoeostasis model assessment (HOMA) β-cell function (%B), was best in South Asians and worse in Afro-Caribbeans, while for insulin sensitivity, measured with HOMA %S, the opposite was true (15). In another study, in which an intravenous glucose tolerance test was performed in 17 healthy first-degree relatives of patients with T2DM and 17 healthy controls with no family history of T2DM, insulin secretary defects prevailed in the European relatives (n = 10), whereas IR was predominant in the South Asian relatives (n = 7) (39). Similar results were found in a study in which an OGTT was performed in 260 middle-aged South Asians with different stages of glucose tolerance. They found that impaired glucose tolerance was not associated with a significant defect in insulin secretion, whereas IR was present already in an early stage of glucose intolerance, suggesting that IR might precede β-cell deficiency (40). Another study found that Asian Indian men (n = 21) had a ~30% increase in basal β-cell responsivity, measured by the oral C-peptide minimal model, compared with White Caucasian men (n = 71) (22). Although this increase in β-cell function was inadequate for their degree of IR as reflected by a lower disposition index, this compensatory increase suggests that β-cell dysfunction is not the main problem. Hence, impairment in insulin secretion does not seem to be the primary defect in the development of T2DM in South Asians, in contrast to other ethnicities, such as Japanese and Afro-Caribbeans (15, 41, 42).

In the next sections, we will describe several possible mechanisms that may contribute to the increased risk of T2DM, and in particular IR in South Asians.

Evolutionary and developmental hypotheses

The excess risk of T2DM among South Asians has been attributed to several hypotheses (Table 2).

The thrifty genotype hypothesis states that predisposition to diabetes must have evolved as an adaptive trait in certain environmental situations which later turned disadvantageous due to changes in life style. According to Neel (43), the thrifty genotype helped survival in the ‘feast-or-famine days of hunting and gathering cultures’, but has now turned detrimental in the modern era of ‘continuous feasting’. In line with the thrifty genotype hypothesis, other evolutionary theories, such as the adipose tissue overflow (44) (see ‘Body composition and fat distribution’), El Niño (45), and the variable disease selection (46) hypotheses, postulate that South Asians are particularly susceptible to central obesity and

<table>
<thead>
<tr>
<th>Prevalence of T2DM (%)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural India</td>
<td>3.0–8.3 (2)</td>
</tr>
<tr>
<td>Urban India</td>
<td>10.9–14.2 (2)</td>
</tr>
<tr>
<td>South Asians (Dutch)</td>
<td>26.7 (10)</td>
</tr>
<tr>
<td>White Caucasians (Dutch)</td>
<td>5.5 (10)</td>
</tr>
</tbody>
</table>
Table 2 Evolutionary and developmental hypotheses explaining the excess risk of T2DM among South Asians.

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Description</th>
<th>Arguments pro/contra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evolutionary hypotheses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrifty genotype (43)</td>
<td>Predisposition to T2DM must have evolved as an adaptive trait in certain environmental situations that later turned disadvantageous due to changes in lifestyle</td>
<td>Does not explain why South Asians, in particular, are susceptible to central rather than peripheral obesity, or why central obesity is more important than generalized obesity in relation to T2DM</td>
</tr>
<tr>
<td>Adipose tissue compartment (44)</td>
<td>The primary adipose tissue compartment is less developed in South Asians due to climatic influences, resulting in early expansion of the secondary adipose tissue compartment, especially in the face of excess energy intake, eventually leading to metabolic disturbances such as dysglycemia and dyslipidemia</td>
<td>Explains why South Asians are particularly susceptible to central obesity, and why White Caucasians appear to be relatively protected from metabolic abnormalities and diabetes</td>
</tr>
<tr>
<td>El Niño (45)</td>
<td>Susceptibility to central obesity and subsequently to IR and T2DM is due to nutritional influences. Chronic energy deficiency favors increased allocation to the visceral depot</td>
<td>Explains why South Asians are particularly susceptible to central obesity For many generations, South Asians have endured fluctuations of energy supply, associated in turn with global climate patterns (El Niño) and geographic circumstances</td>
</tr>
<tr>
<td>Variable disease selection (46)</td>
<td>Susceptibility to central obesity and subsequently to IR and T2DM is due to infectious influences. Exposures to varying burdens of infectious disease may have been a selective pressure accounting for genetic ethnic variability in adipose tissue distribution</td>
<td>Explains why South Asians are particularly susceptible to central obesity Chronic exposure to endemic gastrointestinal diseases, including cholera, has been a long-term stress in South Asian populations</td>
</tr>
<tr>
<td>Mitochondrial efficiency hypothesis (47)</td>
<td>Energy-producing efficiency of mitochondria enhanced the successful adaptation of South Asians to climatic (heat) and other nutritional exposures (periods of starvation). Instead of using energy to generate heat, South Asian' mitochondria are more likely to produce and subsequently store energy. This mitochondrial efficiency might be disadvantageous when adopting a new lifestyle with low physical activity and a high caloric diet</td>
<td>Explains the tendency of South Asians to obesity per se, central obesity, and adverse metabolic outcomes in our current environment, where food is abundant and physical activity is low Integrates other hypotheses, and offers a biological mechanism (mitochondrial gene mutations)</td>
</tr>
<tr>
<td>Developmental hypotheses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrifty phenotype (48)</td>
<td>An intrauterine disadvantageous environment induces thrifty mechanisms that set the metabolism to cope with potential future food shortages, which is beneficial for early survival, but increases the risk of T2DM later in life in a nutrient rich environment. Based on strong association between low birth weight and increased risk of T2DM later in life, which is further increased by rapid weight gain in childhood</td>
<td>Low birth weight and rapid weight gain are common in both native and migrant South Asian neonates Does not explain why South Asians are susceptible to central rather than peripheral obesity, or why central obesity is more important than generalized obesity in relation to T2DM</td>
</tr>
</tbody>
</table>

subsequently to IR and T2DM due to selective evolutionary pressures (e.g. climatic, nutritional, or infectious). Recently, Bhopal & Rafnsson have proposed the mitochondrial efficiency hypothesis: the energy-producing efficiency of mitochondria enhanced the successful adaptation of South Asians to climatic (heat) and other nutritional exposures (periods of starvation). Instead of using energy to generate heat, South Asian’ mitochondria are therefore more likely to produce and subsequently store energy. This mitochondrial efficiency might be disadvantageous when adopting a new lifestyle with low physical activity and a high caloric diet, as is currently the case for South Asians (47). The study of Nair et al. (21) (discussed in ‘Role of skeletal muscle’) supports this hypothesis, in that they found higher mitochondrial capacity for oxidative phosphorylation (OXPHOS) in both non-diabetic and diabetic South Asians compared with non-diabetic White Caucasians.

Finally, according to the thrifty phenotype hypothesis, a developmental theory, there is a mismatch between intrauterine and adult life environments. An intrauterine disadvantageous environment (due to maternal malnutrition, maternal hyperglycemia, or other maternal/placental influences) induces thrifty mechanisms that sets the metabolism to cope with potential future food shortages, which is beneficial for early survival, but increases the risk of diabetes later in life in a nutrient rich environment (48, 49). This theory is based on the strong association between low birth weight and increased risk of T2DM later in life observed in a variety of ethnic populations (50). Low birth weight is common in both native and migrant South Asian neonates (27, 51, 52). The risk to develop T2DM is further increased by rapid weight gain (catch-up growth) in childhood. This applies particularly to countries going through a rapid nutritional transition or when migration takes place from less developed to developed countries, as is the case for both native and migrant South Asians. Interestingly, recent studies in rats have shown that intrauterine growth
restriction increases the susceptibility to high fat (HF)-diet-induced alterations of fat distribution, adipocyte size, lipid metabolism, and insulin-signaling pathways, supporting the thrifty phenotype hypothesis (53), and resembling the problem in South Asians.

Although these hypotheses help explain better why South Asians are at an increased risk of developing IR and T2DM, they do not give an exact molecular mechanism, except the mitochondrial efficiency hypothesis.

Genetic factors

T2DM is considered as a polygenic disease that involves polymorphisms of several genes with a high gene–environment interaction (54). Many loci associated with T2DM have been found in White Caucasians; however, all variants found up till now have a modest effect size, with approximately twofold the lifetime prevalence rate of T2DM in persons carrying two copies of the risk allele compared with persons with no copies (55).

Most loci found in White Caucasians have been verified in studies with South Asian subjects (56, 57, 58), but few differences between the ethnic groups have been found and the differences are not all consistently shown. For example, Radha et al. (59) found that in South Asians the Pro12Ala polymorphism of the peroxisome proliferator activator γ (PPARγ) gene, which has a protective effect on T2DM development in white populations, is present at the same frequency in South Asians with and without diabetes and was not associated with a decreased risk of T2DM. However, in a study on Asian Indian Sikhs they did see a protective effect of the polymorphism, suggesting that there might be differences between specific South Asian groups (60).

An interesting difference might lie in the fat-mass and obesity-associated (FTO) gene, which holds the strongest known obesity-susceptibility locus in Europeans. An association with T2DM has also been shown, but this seemed to be secondary to obesity. In South Asians, however, the FTO polymorphism was found to be associated with T2DM, independently of BMI (61, 62, 63), implying that in South Asians there may be a different relationship between BMI and T2DM. However, associations between FTO and T2DM that were mediated by obesity have been found in South Asians as well (64) and in a study on North India none of the FTO variants was even associated with T2DM (65). Two other recent studies on South Asians found polymorphisms of genes being related to skeletal muscle: one associated with abdominal obesity and low lean body mass (myostatin) (66) and the other contributing to T2DM susceptibility (SCGC) (67), both of which merit further investigation.

Thus, so far no clear genetic differences between White Caucasians and South Asians have been found. Interestingly, most loci associated with T2DM are related to impaired β-cell function and insulin secretion, which are not considered the primary defects in the South Asian population, as discussed before. Therefore, differences between the two ethnic groups on these loci are unlikely. However, an exceptionally high percentage of South Asians have a positive family history of T2DM, making it likely that genetic differences are somehow involved in the increased prevalence of T2DM and IR in this ethnic group.

Diet and exercise

An unhealthy diet is a known risk factor for T2DM. Various studies have reported a number of dietary imbalances in South Asian diets associated with IR, such as high intake of total fat, saturated fatty acids, long chain ω-6 polyunsaturated fatty acids (PUFA), trans fatty acids, and carbohydrates, and low intake of monounsaturated fatty acids, long chain ω-3 PUFA, fiber, and several micronutrients (e.g. magnesium, calcium, and vitamin D) (68, 69, 70, 71, 72, 73). Furthermore, children and adolescents already have a high intake of ω-6 PUFA and a low intake of ω-3 PUFA, which is correlated with fasting hyperinsulinemia (74, 75). However, supplementation of ω-3 PUFAs (fish oil) did not improve insulin sensitivity in South Asians (69, 76). Moreover, other studies even reported that South Asian diets are healthier compared with White Caucasian diets (lower intake of fat) (73, 77, 78, 79). Furthermore, different regional and religious South Asian communities in the UK had a similar, markedly higher prevalence of diabetes compared with white Europeans, despite the known dietary, cultural, and socioeconomic differences between these different South Asian communities. In addition, there were no discernible differences in the dietary customs of those with normal glucose tolerance, impaired glucose tolerance, and newly diagnosed T2DM (80, 81). Lack of exercise is another risk factor for T2DM. The 2004 Health Survey for England data reported lower levels of physical activity in South Asian groups compared with the general UK population and other ethnic minority groups (77), and other studies showed similar results in migrant and urban South Asians (6, 15, 82, 83, 84, 85, 86, 87). This low level of physical activity is already present in children and adolescents (77, 85, 88, 89, 90, 91).

Hence, although lifestyle factors will certainly play a role in the etiology of IR as they do in White Caucasians, there is no reason to assume that this role is any different between both ethnicities. This is strengthened by the fact that the excessive risk for T2DM applies to both native and migrant South Asians despite differences in lifestyle. Hence, South Asians seem to have an exceptionally high susceptibility to develop T2DM in the context of the same environmental pressure when compared with other ethnicities.
Body composition and fat distribution

South Asians develop IR and T2DM at lower ranges of BMI than White Caucasians. An equivalent incidence rate of T2DM is seen at a BMI of 24 kg/m² in South Asians compared with 30 kg/m² in White Caucasian subjects (92). Gray et al. (93) even showed an equivalent level of dysglycemia at a BMI cutoff point of 22.6 kg/m² in South Asian males as compared with 30.0 kg/m² in White Caucasian males. In addition, a cross-sectional study of 4600 9- to 10-year-old children of South Asian, black African-Caribbean, and white European origin showed that South Asian children were more metabolically sensitive to adiposity as indicated by stronger positive associations between HOMA-IR and adiposity measures (94). It has been proposed that an increase in total fat mass and an adverse pattern of fat distribution contributes to the higher risk of T2DM in South Asians at similar BMI levels. Therefore, it has been suggested that ethnic-specific BMI cutoff values should be used for assessing diabetes risk in different populations.

Several studies have shown that South Asians have a higher percentage of body fat for comparable levels of BMI compared with White Caucasians and are therefore referred to as 'metabolically obese' (16, 23, 34, 95, 96, 97) (Table 3). This is already apparent in children and adolescents (98, 99, 100). Also, the distribution of fat differs between ethnicities. South Asian neonates exhibit the ‘thin-fat phenotype’, described as low muscle mass with preserved subcuticular (central) fat (27, 101, 102) and this phenotype is retained in Surinam South Asian babies of the fourth to fifth generation after migration from India (103). Modi et al. (104) showed that South Asian neonates have significantly increased abdominal adiposity compared with European babies and this increase in abdominal adiposity has also been observed in adults in several other studies (16, 23, 34, 95, 96). The ‘thin-fat phenotype’ is also apparent in prepubertal Indian children who have greater adiposity than White UK children despite significantly lower BMIs (29).

It is currently unclear as to which of the abdominal adipose tissue compartments, visceral adipose tissue (VAT) or subcutaneous adipose tissue (SAT), has the most detrimental effect on insulin sensitivity (44). Banerji et al. (16) showed that South Asians have high amounts of VAT and that IR is correlated with total visceral and not with subcutaneous abdominal adipose tissue volume. Other studies also showed an association of VAT with diabetes (105) and cardiovascular risk factors in South Asians (106, 107). However, in a study by Raji et al. (23), insulin sensitivity measured with a hyperinsulinemic euglycemic clamp in healthy South Asians and White Caucasians was inversely related with VAT as well as abdominal SAT and total abdominal adipose tissue. This was, however, a small study including only 12 South Asian and 12 White Caucasian subjects. In another study on 171 South Asians, abdominal SAT was a better predictor of the metabolic syndrome. Also, SAT (and not VAT) was significantly correlated with IR; however, IR was measured by HOMA and data were available only for 46 patients (108). Furthermore, Chandalia et al. (34) showed that IR was present in South Asians who had higher percentages of total body fat and abdominal SAT, but similar amounts of VAT as compared with White Caucasians. However, these studies do not discriminate between superficial SAT (SSAT) and deep SAT (DSAT). It is believed that an increase in DSAT, similar to VAT, is associated with metabolic disturbances (44). Sniderman et al. (44) theorized in their ‘overflow hypothesis’ that SSAT is the primary adipose tissue compartment and DSAT and VAT are secondary compartments, which have adverse metabolic consequences. They propose that South Asians have a less developed primary compartment, resulting in earlier expansion of the secondary compartment, thereby leading to the increased risk of T2DM and CVD. Studies showing that South Asians have higher levels of DSAT and lower or similar amounts of abdominal SSAT as compared with White Caucasians support this hypothesis (109, 110).

Thus, South Asians have higher total fat mass than White Caucasians. This fat is primarily stored in the visceral and deep subcutaneous compartments and correlates with IR. This might be due to different metabolic characteristics of the adipocytes in this compartment as discussed below.

Adipose tissue dysfunction and inflammation

Not only the amount and distribution of body fat differs between South Asians and White Caucasians. It has been proposed that South Asians have abnormalities in adipocyte function as well (Table 4). Adipocytes serve as a buffer for the daily influx of fat. When adipocytes are overloaded, for example in the case of obesity, they become dysfunctional: the ability to store lipids is decreased (111). Studies have shown that South Asians have significantly increased subcutaneous adipocyte size (34, 109). Hypertrophic adipocytes are considered as dysfunctional and appear to be associated with IR in nondiabetic individuals independent of BMI and to be an independent predictor for the development of T2DM.
Table 4 Differences in adipose tissue in South Asians vs White Caucasians.

South Asians vs White Caucasians References

<table>
<thead>
<tr>
<th>Difference</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased adipocyte size</td>
<td>(34, 109, 114)</td>
</tr>
<tr>
<td>Increased FFA release</td>
<td>(115)</td>
</tr>
<tr>
<td>Increased leptin</td>
<td>(18, 22, 115, 117, 118, 119)</td>
</tr>
<tr>
<td>Decreased adiponectin</td>
<td>(36, 119, 124, 125)</td>
</tr>
<tr>
<td>Increased IL6 and TNFα release</td>
<td>(22, 131)</td>
</tr>
<tr>
<td>Increased CRP production</td>
<td>(132, 133)</td>
</tr>
</tbody>
</table>

CRP, C-reactive protein.

Furthermore, Balakrishnan et al. (114) showed that South Asians not only have a higher fraction of very large adipocytes, but also exhibit a higher ratio of small-to-larger adipocytes, which is considered a defect in adipose tissue maturation, resulting in a decreased storage capacity of triglycerides (TG). Also, in a recent study, normoglycemic young South Asian men have shown increased expression of COL6A3 in SAT, which is known to reduce adipocyte maturation (36).

Adipocyte dysfunction was also shown in a study by Abate et al. (115), demonstrating that nondiabetic South Asians have higher fasting levels of free fatty acids (FFAs) compared with White Caucasians, even when adjusted for body fat content, and fail to completely suppress plasma FFA concentration during hyperinsulinemia induced by an OGTT. This suggests that in healthy South Asians, insulin is unable to sufficiently inhibit lipolysis, resulting in an excess efflux of FFA, which may play a role in the development of T2DM.

White adipose tissue not only has a function in the storage and release of FFAs, but is more and more recognized as an endocrine organ secreting several proteins called adipocytokines. Of those, leptin and adiponectin are the most frequently studied in relation to IR and T2DM. Leptin has an important role in food intake, energy expenditure, and glucose metabolism. Leptin seems to have a glucose- and insulin-lowering and insulin-sensitizing effect on the whole body level. Plasma leptin levels are positively correlated with plasma insulin, BMI, and body fat content, therefore obesity reflects a state of leptin-resistance (116). Plasma leptin levels were increased in South Asians as compared with White Caucasian subjects in several studies (18, 22, 115, 117, 118, 119) independent of overall or abdominal obesity. Leptin levels were found to be correlated with SAT and not with VAT (16, 120). However, in some of these studies a difference in fat mass was found between the two groups, or data on fat mass were not reported. Furthermore, in a recent study, no correlation has been shown between leptin and IR in South Asians (121).

In contrast to leptin, adiponectin is decreased in obesity, IR, and T2DM (122). Adiponectin is thought to exert insulin-sensitizing, antiatherogenic, and anti-inflammatory effects (123). South Asians exhibit lower levels of adiponectin compared with White Caucasians (36, 119, 124). This is already evident in babies of 3–6 months old (125). Furthermore, lower adiponectin levels have been found in South Asians with impaired glucose tolerance and T2DM as compared with normal glucose-tolerant South Asian individuals (121, 126). In addition, low adiponectin levels were found to be an independent predictor for T2DM development in South Asians (127). However, another study showed no relation between adiponectin and insulin sensitivity in the South Asian group (128).

Dysfunctional adipose tissue also produces proinflammatory cytokines, such as tumour necrosis factor α (TNFα) and interleukin 6 (IL6), leading to a chronic inflammatory state. Although not yet fully elucidated, it is hypothesized that activation of proinflammatory pathways, for example, in muscle, liver, and adipose tissue, leads to IR by inhibiting the insulin signaling cascade (129, 130). Middle-aged South Asian women exhibited significantly higher IL6 levels than Europeans; however, no ethnic difference in IL6 was detected among men (131). In young South Asian men, however, IL6 levels were found to be elevated compared with White Caucasians (22). In this study, TNFα was elevated as well, yet this difference disappeared when correcting for insulin sensitivity. In addition, in comparison with White Caucasians, studies showed higher C-reactive protein (CRP) levels in South Asians, also suggesting a state of low-grade inflammation (132, 133). The primary production site of CRP is the liver, and not the adipose tissue. However, visceral fat is drained by the portal vein to the liver and CRP production is induced by cytokines, such as IL6 (129). In South Asians, visceral fat was positively associated with CRP levels, independent of total adiposity, and was associated with fasting and 2-h insulin levels during an OGTT (133).

In conclusion, dysfunctional adipose tissue and inflammation are likely to contribute to the South Asian phenotype of increased IR and T2DM. It is, however, difficult to determine the primary defect: adipocyte dysfunction leads to abnormalities in the insulin-signaling pathway, or vice versa: abnormal insulin signaling results in adipocyte dysfunction. Abate et al. (115) proposed that it might be a vicious cycle starting with primary IR, leading to adipose tissue dysfunction, which is reflected by the increased secretion of FFAs and (adipoc)ytokines. The high levels of circulating FFAs in turn can aggravate the IR through the deposition of TG in the non-adipose tissues (134), also called ectopic fat.

Ectopic fat

IR and T2DM are associated with accumulation of ectopic fat, i.e. the storage of TG in non-adipose tissues such as the liver, heart, and skeletal muscle. Intracellular lipid deposition in these tissues is a consequence of oversupply of FFAs due to increased caloric intake, obesity, adipocyte dysfunction, increase in fatty acid
transporters, and/or impairment in mitochondrial lipid oxidation. The subsequent accumulation of intermediates of lipid metabolism, such as long-chain acyl-CoA, diacylglycerol, and ceramids, in these organs appears to disrupt normal metabolic processes, causing organ-specific dysfunction (134).

Deposition of fat in the liver in the absence of excessive alcohol intake is referred to as nonalcoholic fatty liver disease, and is associated with hepatic IR (135, 136). This is due to a reduction in insulin-stimulated hepatic glucose uptake and decreased insulin suppressibility of hepatic glucose production, which both contribute to increased plasma glucose levels (134). In South Asians, limited data have reported higher hepatic TG content in comparison with White Caucasians, as measured by 1H-MRS (22, 109). Petersen et al. (22) showed that young healthy South Asian men \((n = 23) \) had a higher prevalence of IR, as assessed with an OGTT in combination with the insulin sensitivity index, which was associated with an approximately twofold increase in hepatic TG content compared with White Caucasian men \((n = 73) \). Another study reported higher fat infiltration in the liver in adult South Asians \((n = 56) \) vs White Caucasians \((n = 52) \) (109). These data suggest that South Asians appear to be predisposed to develop hepatic steatosis, associated with hepatic IR.

In nonathletic White Caucasians, intramyocellular lipid (IMCL) accumulation is associated with IR and T2DM, due to its toxic effects on insulin signaling (137, 138, 139). In South Asians, IMCL content seems to be higher compared with White Caucasians (22, 140). However, in contrast to White Caucasians, no correlation between IMCL and IR has been found in South Asians so far (22, 109, 140, 141, 142, 143). This suggests that IMCL is of less significance to skeletal muscle insulin sensitivity in South Asians compared with White Caucasians.

Role of skeletal muscle

Muscle glucose uptake accounts for 75–80% of whole-body insulin-stimulated glucose disposal (144). Total body muscle mass (relative to body size) has been shown to exert an independent effect on insulin sensitivity and glucose disposal (145). Several studies reported that skeletal muscle mass, or lean body mass, is lower in South Asians than in White Caucasians (16, 95, 97, 100, 109, 146). Furthermore, low muscle mass was associated with reduced insulin sensitivity in young, lean South Asian men (147). In studies conducted at our research center, we also found lower lean body mass in healthy young South Asian men compared with BMI-matched White Caucasians, as measured by dual-energy x-ray absorptiometry (DEXA)-scan (LEH Bakker, MR Boon, RAD Van der Linden, L Pereira Arias-Bouda, F Smit, JW Jukema, JT Tamsma, HJ Verberne, LM Havekes, WD Van Marken Lichtenbelt, IM Jazet and PCN Rensen 2013, unpublished data).

In White Caucasian T2DM patients, the primary defect at the skeletal muscle level seems to reside in nonoxidative glucose disposal, i.e. glycogen synthesis, due to impairments in insulin-stimulated GLUT4 translocation leading to impaired glucose transport (148, 149, 150). These impairments in the insulin-signaling pathway seem to be induced by defects in the oxidation of mitochondrial fatty acid and/or increased delivery of fatty acids, leading to IMCL accumulation. IMCL, in turn, can impair insulin signal transduction (134). Indeed, in T2DM patients several defects in the insulin-signaling pathway have been found (151). Furthermore, reduced mitochondrial density with reduced OXPHOS have been described in insulin-resistant offspring of patients with T2DM (152). Moreover, maximal oxygen uptake, or \(V_{O_{2max}} \) (a measure of whole-body oxidative capacity), is found to be a strong independent predictor of peripheral insulin sensitivity in White Caucasians (153, 154, 155), and low cardiorespiratory fitness is associated with low skeletal muscle lipid oxidative capacity (156). One might speculate, therefore, that the increased risk of IR and T2DM in South Asians might be, at least in part, explained by reduced skeletal muscle oxidative capacity.

In South Asians, several studies reported lower \(V_{O_{2max}} \) values in South Asians compared with White Caucasians (89, 146, 157). A recent study by Ghouri et al. (97) has confirmed this finding in middle-aged South Asian men without T2DM \((n = 87) \) compared with age- and BMI-matched European men \((n = 99) \) and, importantly, found that the lower cardiorespiratory fitness showed 68% of the ethnic difference in HOMA-IR. Of note, the lower \(V_{O_{2max}} \) could not be explained by their lower levels of physical activity, indicating that low physical fitness is an innate feature of the South Asian phenotype. However, so far only two relatively small in-depth studies have been performed in South Asians, in which skeletal muscle biopsies were obtained to find out more about the molecular mechanisms of the increased risk of IR and T2DM in this ethnicity. In a study by Nair et al. (21) no impairment in mitochondrial function (measured as skeletal muscle mitochondrial capacity for OXPHOS as assessed by mitochondrial DNA (mtDNA) copy number, OXPHOS gene transcripts, citrate synthase activity, and maximal mitochondrial ATP production rate) was found in 13 healthy, middle-aged South Asians living in the USA, despite the finding that they were more insulin resistant than 13 age-, sex-, and BMI-matched Northern European Americans. On the contrary, South Asians had even higher mitochondrial capacity for OXPHOS. Hall et al. (146) also reported that healthy, young, lean male South Asians \((n = 20) \) compared with age- and BMI-matched White Caucasians \((n = 20) \) did not exhibit lower expression of skeletal muscle oxidative and lipid metabolism genes, and mtDNA:nuclear DNA ratio (index of mitochondrial biogenesis) did not differ between groups. Gene expression of carnitine palmitoyltransferase 1A (CPT1A) and

References

1. Petersen PE, Corbett MB, Hanson RL, et al. Increased plasma glucose levels (134). In South Asians, glucose uptake and decreased insulin suppressibility of hepatic glucose production, which both contribute to increased plasma glucose levels (134). In South Asians, limited data have reported higher hepatic TG content in comparison with White Caucasians, as measured by 1H-MRS (22, 109). Petersen et al. (22) showed that young healthy South Asian men \((n = 23) \) had a higher prevalence of IR, as assessed with an OGTT in combination with the insulin sensitivity index, which was associated with an approximately twofold increase in hepatic TG content compared with White Caucasian men \((n = 73) \). Another study reported higher fat infiltration in the liver in adult South Asians \((n = 56) \) vs White Caucasians \((n = 52) \) (109). These data suggest that South Asians appear to be predisposed to develop hepatic steatosis, associated with hepatic IR.

In nonathletic White Caucasians, intramyocellular lipid (IMCL) accumulation is associated with IR and T2DM, due to its toxic effects on insulin signaling (137, 138, 139). In South Asians, IMCL content seems to be higher compared with White Caucasians (22, 140). However, in contrast to White Caucasians, no correlation between IMCL and IR has been found in South Asians so far (22, 109, 140, 141, 142, 143). This suggests that IMCL is of less significance to skeletal muscle insulin sensitivity in South Asians compared with White Caucasians.

Role of skeletal muscle

Muscle glucose uptake accounts for 75–80% of whole-body insulin-stimulated glucose disposal (144). Total body muscle mass (relative to body size) has been shown to exert an independent effect on insulin sensitivity and glucose disposal (145). Several studies reported that skeletal muscle mass, or lean body mass, is lower in South Asians than in White Caucasians (16, 95, 97, 100, 109, 146). Furthermore, low muscle mass was associated with reduced insulin sensitivity in young, lean South Asian men (147). In studies conducted at our research center, we also found lower lean body mass in healthy young South Asian men compared with BMI-matched White Caucasians, as measured by dual-energy x-ray absorptiometry (DEXA)-scan (LEH Bakker, MR Boon, RAD Van der Linden, L Pereira Arias-Bouda, F Smit, JW Jukema, JT Tamsma, HJ Verberne, LM Havekes, WD Van Marken Lichtenbelt, IM Jazet and PCN Rensen 2013, unpublished data).

In White Caucasian T2DM patients, the primary defect at the skeletal muscle level seems to reside in nonoxidative glucose disposal, i.e. glycogen synthesis, due to impairments in insulin-stimulated GLUT4 translocation leading to impaired glucose transport (148, 149, 150). These impairments in the insulin-signaling pathway seem to be induced by defects in the oxidation of mitochondrial fatty acid and/or increased delivery of fatty acids, leading to IMCL accumulation. IMCL, in turn, can impair insulin signal transduction (134). Indeed, in T2DM patients several defects in the insulin-signaling pathway have been found (151). Furthermore, reduced mitochondrial density with reduced OXPHOS have been described in insulin-resistant offspring of patients with T2DM (152). Moreover, maximal oxygen uptake, or \(V_{O_{2max}} \) (a measure of whole-body oxidative capacity), is found to be a strong independent predictor of peripheral insulin sensitivity in White Caucasians (153, 154, 155), and low cardiorespiratory fitness is associated with low skeletal muscle lipid oxidative capacity (156). One might speculate, therefore, that the increased risk of IR and T2DM in South Asians might be, at least in part, explained by reduced skeletal muscle oxidative capacity.

In South Asians, several studies reported lower \(V_{O_{2max}} \) values in South Asians compared with White Caucasians (89, 146, 157). A recent study by Ghouri et al. (97) has confirmed this finding in middle-aged South Asian men without T2DM \((n = 87) \) compared with age- and BMI-matched European men \((n = 99) \) and, importantly, found that the lower cardiorespiratory fitness showed 68% of the ethnic difference in HOMA-IR. Of note, the lower \(V_{O_{2max}} \) could not be explained by their lower levels of physical activity, indicating that low physical fitness is an innate feature of the South Asian phenotype. However, so far only two relatively small in-depth studies have been performed in South Asians, in which skeletal muscle biopsies were obtained to find out more about the molecular mechanisms of the increased risk of IR and T2DM in this ethnicity. In a study by Nair et al. (21) no impairment in mitochondrial function (measured as skeletal muscle mitochondrial capacity for OXPHOS as assessed by mitochondrial DNA (mtDNA) copy number, OXPHOS gene transcripts, citrate synthase activity, and maximal mitochondrial ATP production rate) was found in 13 healthy, middle-aged South Asians living in the USA, despite the finding that they were more insulin resistant than 13 age-, sex-, and BMI-matched Northern European Americans. On the contrary, South Asians had even higher mitochondrial capacity for OXPHOS. Hall et al. (146) also reported that healthy, young, lean male South Asians \((n = 20) \) compared with age- and BMI-matched White Caucasians \((n = 20) \) did not exhibit lower expression of skeletal muscle oxidative and lipid metabolism genes, and mtDNA:nuclear DNA ratio (index of mitochondrial biogenesis) did not differ between groups. Gene expression of carnitine palmitoyltransferase 1A (CPT1A) and
fatty acid synthase (FASN), both involved in lipid metabolism, was even higher in South Asians. Consequently, both studies concluded that mitochondrial dysfunction did not account for the observed IR in South Asians. Importantly, Hall et al. (146) also showed that South Asians oxidized less fat during submaximal exercise, whereas the resting rate of fat oxidation did not differ between groups. This difference, however, was not reflected in reduced skeletal muscle expression of oxidative and lipid metabolism genes. It should be noted, however, that these results are derived from only two relatively small studies carried out in different age groups, and thus extrapolation of these results to the whole South Asian population should be done with caution.

The above-mentioned study of Hall et al. (146) is the only study that compared skeletal muscle insulin signaling between both ethnicities. Interestingly, this study showed that South Asians had reduced skeletal muscle protein expression of key insulin signaling proteins (phosphatidylinositol 3'-kinase p85 subunit (PI3K (p85)) and protein kinase B serine 473 phosphorylation (pPKB-Ser473)). Basal Ser473 phosphorylation of PKB was even 60% lower in South Asians, and was significantly correlated with whole-body insulin sensitivity. However, the expression of the insulin signaling proteins in the hyperinsulinemic condition was assessed in response to maximal insulin stimulation by incubating for 10 min in the presence of 10 nM soluble human insulin, instead of using a hyperinsulinemic clamp. Hence, the meaning of this finding needs to be corroborated.

To summarize, South Asians have less skeletal muscle mass and seem to have lower cardiorespiratory fitness and reduced capacity for fat oxidation during submaximal exercise, all correlating with their reduced whole-body insulin sensitivity, which is not reflected in reduced expression of oxidative and lipid metabolism genes in the skeletal muscle (146). However, so far only two relatively small in-depth studies have been performed in South Asians; therefore, these results should be interpreted with caution and more research is warranted.

Nitric oxide bioavailability: endothelial and HDL-cholesterol dysfunction

Apart from the aforementioned metabolic functions, insulin also stimulates the release of nitric oxide (NO) from endothelium, which leads to peripheral vasodilatation, increased capillary recruitment, and increased blood flow. Subsequently, these hemodynamic actions increase the delivery of insulin to (underperfused) tissues and enhance the delivery of glucose and other substrates to the skeletal muscle. It is thought that 25–40% of insulin-mediated glucose disposal is due to its hemodynamic effects (158, 159).

Several studies have demonstrated that South Asians have lower NO bioavailability compared with White Caucasians (160, 161). NO is mainly produced by the endothelium as a consequence of an interaction with HDL-cholesterol (HDL-C) (162, 163). Thus, a diminished NO bioavailability might be caused by the dysfunction of the endothelium and/or dysfunctional HDL-C. To what extent lower NO availability is present in South Asians as well as its cause, endothelial or HDL-C dysfunction, or a combination of both, are yet unknown.

Endothelial dysfunction is defined as inadequate endothelial-mediated vasodilatation and is present in patients with obesity, dyslipidemia, diabetes, and very early in individuals with (a high risk of) atherosclerosis. IR and endothelial dysfunction are closely related. It has been shown that gluco- and lipotoxicity decrease NO availability (158, 159). In South Asians, impairments in endothelial function have been reported. Chambers et al. showed that endothelium-dependent dilatation (measured as brachial artery flow-mediated dilatation) was reduced in South Asians living in the UK compared with White Caucasians and this was confirmed by other studies (161, 164). In yet another study, although no difference in vasodilatation was observed after reactive hyperemia or sublingual nitroglycerin administration between the two ethnic groups, the increase in vasodilatation during hyperinsulinemia compared with basal conditions was significantly lower in South Asians (24). Signs of endothelial dysfunctions are already present early in life in South Asians. Din et al. (165) showed that healthy, young South Asian men have increased arterial stiffness (reflected by an increased augmentation of radial artery pressure wave-forms) compared with healthy, young White Caucasians. Interestingly, in the cord blood of South Asian neonates an elevated level of E-selectin, a marker of endothelial dysfunction which has been shown to predict the occurrence of T2DM in adult women, was found, suggesting that endothelial dysfunction might already be present at birth (26). Furthermore, it was shown that South Asians have lower circulating numbers of endothelial progenitor cells (EPCs) and EPC colony forming units, which may result in a reduced capacity for endothelial repair (160, 161). However, others did not find a difference in the EPC count between South Asian and White Caucasian men with established atherosclerosis (166).

Besides endothelial dysfunction, HDL-C dysfunction might also play a role in the decreased NO bioavailability observed in South Asians. Multiple studies have consistently shown lower HDL-C levels in South Asians compared with White Caucasians (19, 20, 23, 33, 99, 132, 167). Not only do they have lower levels of HDL-C, they also seem to have more small-dense dysfunctional HDL-C particles, which are thought to be proinflammatory and less protective compared with normal HDL-C (168).
A diminished NO bioavailability in South Asians might thus be caused by both endothelial and HDL-C dysfunction, and might be a factor in the increased incidence of T2DM and cardiovascular diseases in this ethnic group.

Conclusion and future directions

The risk of developing T2DM is exceptionally high among both native and migrant South Asians, comprising one-fifth of the world’s population. The disease develops about a decade earlier than in White Caucasians, and South Asians also have an increased incidence of retinopathy, nephropathy, and coronary artery and cerebrovascular disease. Even nondiabetic individuals have higher insulin levels compared with other ethnic groups regardless of age, gender, or BMI. This points to impaired insulin sensitivity (IS). Indeed, several studies have shown that the predominant mechanism leading to the increased risk of T2DM in South Asians seems to be IR rather than decreased β-cell function.

We have tried to review several pathogenetic factors that might underlie the increased and accelerated risk to develop IR and T2DM in South Asians, which is shown in Fig. 2.

Given the strong familial clustering of T2DM in South Asians, one would assume distinctive genetic differences between White Caucasians and South Asians. However, the presence of polymorphisms associated with T2DM found thus far does not clearly differ between the two ethnicities. It might be that either the wrong loci have been investigated (i.e. South Asians have different polymorphisms), the sample sizes were too small, or that the increased risk is caused by epigenetic differences. We believe that genetics or epigenetics must play a role, despite the fact that this has not been confirmed yet.

South Asians unmistakably have a different body composition than White Caucasians, with relatively thin extremities and increased abdominal adiposity, both in the visceral as well as in the deep subcutaneous compartments. Increased visceral and deep subcutaneous fat mass are associated with IR. Up till now, however, studies on South Asians show contradictory results with either an association of VAT with IR or of SAT with IR. Furthermore, South Asians appear to have dysfunctional adipocytes, leading to a decreased storage capacity for TG and impaired release of FFAs, adipokines, and proinflammatory cytokines, which are thought to disrupt the insulin-signaling pathway.

Remarkably, as of yet no convincing differences in intracellular signaling cascades and enzymatic process involved in insulin signaling have been found between South Asians and White Caucasians. However, so far only two relatively small studies obtained muscle biopsies and investigated mitochondrial function, and only one investigated the insulin signaling pathway. Some studies show differences in endothelial function, suggesting that perhaps impaired insulin-mediated capillary recruitment plays a role in the development of IR in South Asians. This would lead to diminished insulin delivery to its site of action. Hence, perhaps the fact that no difference in insulin signaling was observed is a quantitative problem.

![Figure 2](https://www.eje-online.org)

Figure 2 Potential pathophysiological mechanisms that may underlie or contribute to the increased risk of T2DM in South Asians compared with White Caucasians.

Differences in dietary habits do not seem to play an important role in the increased diabetes risk. The number of studies examining the effects of exercise is small but consistently show – self-reported – lower daily activity levels and lower cardiorespiratory fitness (maximal oxygen uptake VO_{2max}) in South Asians, which appears to contribute to the increased level of IR. Further research should focus not only on duration and intensity of physical activity and exercise (endurance vs strength) but also on the underlying cellular mechanisms.

We think there are several other areas of interest that should be explored in South Asians to further investigate the increased risk for IR and T2DM. Firstly, brown adipose tissue (BAT): BAT burns TG and glucose to generate heat through a process called mitochondrial uncoupling (169). As BAT is involved in around 20% of total energy expenditure (170) and clearance of serum TG and glucose, it could play a role in the disturbed metabolic phenotype of South Asians. Secondly, and in light of the interest in BAT, is irisin: irisin is a recently discovered myokine that increases with exercise and is, at least in rodents, involved in browning of white adipose tissue (171). Given the fact that South Asians have lower muscle mass and lower physical activity levels, the role of irisin in IR and the amount of BAT should be further explored. Thirdly, the gut microbiota of South Asians might be quite different from White Caucasians. The gut microbiota of obese subjects appears to be different from that of lean subjects and is thought to be associated with IR (172). Fourthly, the thin-fat phenotype might suggest differences in the hypothalamic–pituitary–adrenal axis with (tissue-specific) impaired cortisol metabolism.

As for now, we conclude that the strong genetic predisposition for T2DM in South Asians should be explained by as of yet undiscovered polymorphisms that negatively interact with environmental factors such as Western-type diet and low level of physical activity. In addition, genetic makeup accounts for the disadvantageous body composition with low muscle mass and increased visceral fat mass. The ensuing effects on the release of proinflammatory adipocytokines, myokines, and FFAs disrupt cellular processes and induce IR.

Supplementary data
This is linked to the online version of the paper at http://dx.doi.org/10.1530/EJE-13-0307.

Declaration of interest
The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the review reported.

Funding
This study was funded by an unrestricted grant of Roba Metals BV (Ijselstein, The Netherlands).

Author contribution statement
I. E. H. Bakker and M. A. Sleddering contributed to the literature search, literature selection, and manuscript writing. J. W. Schoonjes contributed to the literature search and literature selection. A. E. Meinders and J. M. Junet contributed to the literature selection and reviewed/edited the manuscript.

References

18 Liew CF, Seah ES, Yeo KP, Lee KO & Wise SD. Lean, nondiabetic Asian Indians have enhanced skeletal muscle mitochondrial capacity to produce ATP in association with severe insulin resistance. Diabetes 2008 57 1166–1175. (doi:10.2337/db07-1556)

54 Radha V & Mohan V. Genetic predisposition to type 2 diabetes among South Asian Indians. Indian Journal of Medical Research 2007 125 259–274.
64 Ramya K, Radha V, Ghosh S, Majumder PP & Mohan V. Genetic variations in the FTO gene are associated with type 2 diabetes and obesity in South Indians (CURES-79). Diabetes Technology & Therapeutics 2011 13 33–42. (doi:10.1089/dtt.2010.0071)

158 Cersosimo E & DeFronzo RA. Insulin resistance and endothelial dysfunction: the road map to cardiovascular diseases. Diabetes/Metabolism Research and Reviews 2006 22 423–436. (doi:10.1002/dmrr.634)

Received 12 April 2013
Revised version received 16 July 2013
Accepted 12 August 2013