CLINICAL STUDY

MEN1 intragenic deletions may represent the most prevalent somatic event in sporadic primary hyperparathyroidism

Maria Inês Alvelos1,2, João Vinagre1,3,4, Elsa Fonseca1,4,5, Eva Barbosa3,6, José Teixeira-Gomes1, Manuel Sobrinho-Simões1,4,5 and Paula Soares1,4
1Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-465 Porto, Portugal, 2Faculty of Engineering of the University of Porto (FEUP), 4200-465 Porto, Portugal, 3Institute of Biomedical Sciences Abel Salazar (ICRAS), University of Porto, 4099-003 Porto, Portugal, 4Medical Faculty of the University of the Porto (FMUP), 4200-319 Porto, Portugal, 5Department of Pathology, Hospital S João, 4200-319 Porto, Portugal and 6Hospital Pedro Hispano, 4454-509 Porto, Portugal
(Correspondence should be addressed to P Soares who is now at IPATIMUP – Cancer Biology, Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal; Email: psoares@ipatimup.pt)

Abstract

Objective: Primary hyperparathyroidism (pHPT) is characterised by an inappropriate over production of parathyroid hormone and it is the most frequent pathological condition of the parathyroid glands. A minority of the cases belong to familial forms, but most of them are sporadic. The genetic alterations underlying the sporadic forms of pHPT remain poorly understood. The main goal of our study is to perform the molecular characterisation of a series of sporadic pHPT cases.

Design and methods: We have studied matched blood and tumour from 24 patients with pHPT, who went to a medical appointment in Hospital Pedro Hispano. Informed consent was obtained from all individuals. The MEN1, RET and CDKN1B molecular study was carried out in the germline DNA by PCR/SSCP and direct sequencing. Parathyroid tumours were further analysed by the same methods for MEN1, CDKN1B and CTNNB1 genetic alterations. The multiplex ligation-dependent probe amplification technique enabled the evaluation of MEN1 gene deletions. Protein expression for menin, cyclin D1, parafibromin, p27Kip1, β-catenin and Ki-67 was conducted by immunohistochemistry.

Results: The study of parathyroid tumours detected two somatic MEN1 mutations (c.249_252delGTCT and c.115_163del49bp) and revealed the presence of MEN1 intragenic deletions in 54% (13/24) of the tumours. In RET and CDKN1B genes only previously described, non-pathogenic variants were found. Cyclin D1 protein was overexpressed in 13% (3/24) of tumours.

Conclusions: These results suggest that MEN1 alterations, remarkably intragenic deletions, may represent the most prevalent genetic alteration in sporadic parathyroid tumours.

Introduction

Primary hyperparathyroidism (pHPT) represents one of the most common endocrine disorders in western populations (1). Clinically, the hallmark of pHPT is characterised by a disproportionate secretion of parathyroid hormone (PTH) that culminates in raised serum calcium causing adverse effects on many organs. Sporadic cases of pHPT are often attributed to the presence of a benign, single adenoma in 80% of the cases, to multiglandular parathyroid hyperplasia in 15–20% of cases and to parathyroid carcinoma in about 1% (2).

Non-familial pHPT accounts for more than 95% of the cases, while the remaining cases occur in the setting of inherited disorders: multiple endocrine neoplasia type 1 or type 2 (MEN1 or MEN2) and more rarely HPT–jaw tumour (HPT–JT) syndrome, caused by germ-line mutations in MEN1 tumour suppressor gene, RET proto-oncogene and HRPT2 (CDC73) tumour suppressor gene (3, 4). Additionally, germline mutations in CDKN1B, the gene coding for the cyclin-dependent kinase inhibitor p27Kip1, were identified in a few families bearing a MEN1-like syndrome, thus evidencing a p27Kip1 contribution in pHPT development (5). Therefore, the identification of CDKN1B germline mutations has defined a novel multiple endocrine neoplasia syndrome, MEN4 (OMIM No.610755) (6). This entity clinically closer to pHPT is characterised by parathyroid involvement and, less typically, by pituitary adenomas and other endocrine features (7). Until now, six germline CDKN1B mutations have been found in patients with a MEN1-like phenotype but were negative for MEN1 mutations (8). At variance with the well-known genetic alterations underneath familial pHPT, the molecular alterations underlying the sporadic forms still remain poorly understood. In an attempt to
elucidate the genetic alterations of sporadic pHPT. Classical tumour suppressor genes have been investigated (e.g. TP53, RB and those encoding cyclin-dependent kinase inhibitors – CDKN2A, CDKN2C and CDKN2D), but evidence of somatic inactivation of these genes in parathyroid tumours was rarely found (9, 10).

β-Catenin is a transcription-activating protein with oncogenic potential, and a mutation-dominant effect has been hypothesised: until now, only somatic heterozygous mutations have been identified for CTNNB1 (sporadic colorectal carcinoma, hepatoblastoma) (11). Deregulated activation of the Wnt signalling pathway, through stabilising β-catenin mutations in exon 3 or inactivating APC mutations, is involved in the majority of colorectal cancer (11, 12). Also in primary (parathyroid tumours) and in secondary HPT (hyperplastic parathyroid glands), excessive β-catenin signalling was reported as a major alteration. Bjorklund et al. (13) demonstrated activation of the canonical pathway through excessive β-catenin signalling and the presence of a stabilising mutation in a small subset of cases. Conversely, independent studies of parathyroid adenoma series have failed to identify mutations in the β-catenin gene, CTNNB1 (14).

To date, two genes have established roles in the development of sporadic parathyroid tumours: MEN1 and cyclin D1 (CCND1), both located at chromosome 11 (11q13). MEN1 tumour suppressor gene, which was identified in 1997 (15, 16), encompasses ten exons that encode a 610 amino acid protein referred to as menin (17, 18). Using polymorphic markers, loss of MEN1 locus was observed in 25–40% of sporadic parathyroid tumours, and an accompanying inactivating mutation was detected in about 50% of these tumours (19, 20, 21).

The CCND1 gene (also known as PRAD1 – parathyroid adenomatosis 1) encodes a protein product that is a key regulator of the cell cycle. cCCND1 was first recognised as an oncogene in parathyroid tumours due its rearrangement with the PTH gene promoter region (22). Overexpression of this cell cycle regulator is observed in several human cancers such as breast, colon, lymphoma, melanoma and prostate (23). Cyclin D1 overexpression has been implicated through abnormal expression levels in the pathogenesis of 20–40% of sporadic parathyroid tumours (24, 25).

Regarding parathyroid carcinomas, inactivating mutations of parafibromin are the most common genetic events with a mutation rate ranging from 66 to 100% and concomitant loss of immunoreactivity. Consequently, it was advanced that parafibromin protein expression discriminates parathyroid carcinoma from benign parathyroid lesions (26).

The aim of this work is to perform a thorough molecular characterisation of a series of sporadic pHPT cases in order to contribute to a more accurate diagnosis and unveil pivotal steps in the etiopathogenesis.

Materials and methods

Subjects

A retrospective review of a database of patients with pHPT was conducted in Hospital Pedro Hispano (HPH), Portugal, retrieving 80 patients. Upon attainment of informed consent, 30 patients (8 males: 22 females; average age 61 years, ranging from 32 to 89 years) had a medical appointment consisting of a systematic interrogation about their personal, familial history and physical examination. The diagnosis of sporadic pHPT was based on elevated levels of serum calcium (≥2.75 mmol/l) and PTH (≥6.8 pmol/l) and a negative family history. The study was approved by the ethics committee of HPH, and all the procedures were in accordance with the institutional and national ethical rules.

Genetic analysis

Germline study of MEN1, RET and CDKN1B genes was performed in DNA extracted from peripheral blood leukocytes of 30 patients (27). The study of somatic alterations was carried out in DNA extracted (Puregene kit, Gentra Systems, Inc., Minneapolis, MN, USA) from formalin-fixed paraffin-embedded (FFPE) tissues from 24 patients, provided by the Department of Pathology of HPH (FFPE material from six patients was not available, not representative or degraded). The histological slides of the parathyroid lesions were reviewed by a pathologist (E F), with 19 tumours (79%) classified as adenomas (uniglandular disease) and five (21%) as hyperplastic glands (multiglandular disease).

Mutational analysis

The MEN1 (ENSG00000133895) gene coding exons 2–10, RET (ENSG00000166531) gene coding exons 10, 11 and 13–16 and the entire CDKN1B (ENSG00000111276) gene encoding exons 1 and 2 were amplified in the germline and somatic DNA samples by PCR, using specific primers and annealing temperatures (primers and annealing temperatures summarised in Supplementary Data: Tables 1 and 2). The PCR was performed in a volume of 25 μl containing 5 μl of 5 × PCR buffer (Bioron, Ludwigshafen, Germany), 2.5 mM MgCl2 (Bioron), 1 μl deoxynucleoside triphosphates (5 mmol/l each) (Bioron), 0.24 μM of each primer, 1 U Taq DNA Polymerase (Bioron) and 50–100 ng genomic DNA. Thermal cycling conditions used were as follows: an initial denaturation step at 94 °C for 3 min, followed by 35–40 cycles of denaturation at 94 °C for 20 s, annealing at 55–65 °C for 30 s, extension at 72 °C for 45 s and a final extension at 72 °C for 10 min.

The samples were analysed by SSCP followed by direct DNA sequencing in the cases presenting abnormal electrophoresis mobility. SSCP was performed by denaturing samples and running them in a vertical
electrophoresis using a Mutation Detection Enhancement (MDE) gel (Cambrex Bio Science Rockland, Inc., Rockland, ME, USA) at 8 or 20 °C (exon dependent). Results were revealed using silver staining. PCR products were subjected to sequencing in both strands using the Big Dye Terminator Cycle Sequencing Reaction kit (Applied Biosystems, Life Technologies Corporation) and analysed on ABI PRISM 3100 Genetic Analyzer (Applied Biosystems). The CDKN1B exons and CTNNB1 exon 3 analysis was performed by PCR and direct sequencing as described elsewhere (28).

Multiplex ligation-dependent probe amplification

DNA from germline (n = 30) and tumour (n = 24) samples was analysed for genetic deletions using multiplex ligation-dependent probe amplification (MLPA) kit (SALSA MLPA Kit P017-B1 MEN1 MRC Holland, Amsterdam, The Netherlands) according to the manufacturer’s instructions. MLPA fragments were run on ABI PRISM 3100 Genetic Analyzer (Applied Biosystems), and the data were analysed using Coffalyser software (MRC Holland). MLPA results were reproduced at least three times.

Molecular allelotyping

Loss of heterozygosity (LOH) analysis was performed on DNA from tumour and matched peripheral leukocyte DNA. Three microsatellite markers at 11q13 (D11S956, PYGM and RH27780) region were used to evaluate the extension of MEN1 deletions provided by MLPA. In each primer pair, one nucleotide was labelled with TET or HEX. TAMRA500 (Applied Biosystems) was used as an internal size standard. In order to analyse allelic loss within the MEN1 locus, a polymorphism in exon 9 (SNP ID: rs2071313) was genotyped.

Fragment size analysis was performed using ABI PRISM 3100 Genetic Analyzer (Applied Biosystems). The data were analysed regarding allele size and quantitative information on allele height and area. LOH was defined according to the formula: LOH = (T2 × N1)/(T1 × N2), where T was the tumour sample, N was the corresponding blood sample and 1 and 2 were the peak areas of smaller and larger alleles. LOH was defined with values of LOH index <0.6 or >1.67.

Microsatellite instability (MSI) was evaluated using five quasimonomorphic mononucleotide repeats named BAT-26, BAT-25, NR-24, NR-21 and NR-27 as described previously (29).

Immunohistochemistry

Sections of the parathyroid lesions were deparaffinised and rehydrated in alcohol. Endogenous peroxidase activity was quenched by incubating the slides with 3% (v/v) hydrogen peroxide in methanol. Microwave-treated antigen retrieval was used for cyclin D1, β-catenin, Ki-67 and p27kip1 in 10 mM citrate buffer, pH = 6, and EDTA buffer, pH = 9, for paraffin

**Loss of heterozygosity (LOH) analysis was performed on DNA from tumour and matched peripheral leukocyte DNA. Three microsatellite markers at 11q13 (D11S956, PYGM and RH27780) region were used to evaluate the extension of MEN1 deletions provided by MLPA. In each primer pair, one nucleotide was labelled with TET or HEX. TAMRA500 (Applied Biosystems) was used as an internal size standard. In order to analyse allelic loss within the MEN1 locus, a polymorphism in exon 9 (SNP ID: rs2071313) was genotyped. Fragment size analysis was performed using ABI PRISM 3100 Genetic Analyzer (Applied Biosystems). The data were analysed regarding allele size and quantitative information on allele height and area. LOH was defined according to the formula: LOH = (T2 × N1)/(T1 × N2), where T was the tumour sample, N was the corresponding blood sample and 1 and 2 were the peak areas of smaller and larger alleles. LOH was defined with values of LOH index <0.6 or >1.67. Microsatellite instability (MSI) was evaluated using five quasimonomorphic mononucleotide repeats named BAT-26, BAT-25, NR-24, NR-21 and NR-27 as described previously (29).

Results

Study of germline mutations in MEN1, RET and CDKN1B genes

A search for germline mutations in MEN1, RET and CDKN1B genes was carried out. One patient had a germline heterozygous frameshift mutation (c.628_631delACAG) at exon 3 of the MEN1 gene and was thereby excluded from this study. None of the 30 cases showed large MEN1 germline deletions detected by MLPA and/or microsatellites polymorphic loci.

No other molecular alterations were detected at the germline level besides previously described, non-pathogenic DNA variants (Table 1). All the variants are in Hardy–Weinberg equilibrium and the genotypic and allelic frequencies found did not differ from those already described for European populations (http://www.ncbi.nlm.nih.gov/snp).

Statistical analysis

In order to calculate the Hardy–Weinberg equilibrium, the Arlequin software (http://anthro.unige.ch/arlequin/) was used. Correlations were performed using Pearson correlation test, using SPSS 14.0 software. The level of statistical significance was set at P < 0.05.
Table 1 Germline molecular alterations in MEN1, RET and CDKN1B genes (n=30).

<table>
<thead>
<tr>
<th>Gene/exon</th>
<th>Genetic alteration classification</th>
<th>Nucleotide change</th>
<th>Genotypic frequencies (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEN1/3</td>
<td>Deletion</td>
<td>c.628_631delACAG†</td>
<td>0.03</td>
</tr>
<tr>
<td>MEN1/9</td>
<td>Synonymous polymorphism</td>
<td>GAC→GAT (D418D)</td>
<td>CC=0.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CT=0.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TT=0.13</td>
</tr>
<tr>
<td>RET/11</td>
<td>Non-synonymous polymorphism</td>
<td>GGT→AGT (G691S)</td>
<td>GG=0.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GA=0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AA=0.03</td>
</tr>
<tr>
<td>RET/13</td>
<td>Synonymous polymorphism</td>
<td>CTT→CTG (L769L)</td>
<td>TT=0.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TG=0.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GG=0.03</td>
</tr>
<tr>
<td>RET/14</td>
<td>Synonymous polymorphism</td>
<td>AGC→AGT (S836S)</td>
<td>CC=0.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CT=0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TT=0.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TG=0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GG=0.03</td>
</tr>
<tr>
<td>CDKN1B/1</td>
<td>Non-synonymous polymorphism</td>
<td>GTC→GGC (V109G)</td>
<td></td>
</tr>
</tbody>
</table>

†Mutation is numbered in relation to the MEN1 cDNA reference sequence (GenBank accession number NM_130799.1), whereby nucleotide +1 corresponds to the A of the ATG – translation initiation codon.

Somatic alterations in MEN1 gene

Somatic mutations in the MEN1 gene were found in two of the 24 parathyroid tumours (two adenomas: cases 3 and 17, Fig. 3). The mutations were located in exon 2: a four base pair deletion (c.249_252delGTCT) previously described (16), and a new mutation corresponding to a 49 bp deletion (c.115_163del49bp). Both mutations are frameshift deletions resulting in altered amino acid sequences that create premature stop codons at positions 117 and 102 respectively, presumably leading to a truncated protein. None of the mutations were found in the corresponding leukocyte DNA and were therefore considered somatic mutations.

In case 17, harbouring the somatic c.115_163del49bp deletion, the electropherogram analysis indicated that the tumour cells were hemizygous for the mutant allele suggesting LOH of the normal allele. This result was further confirmed by MLPA analysis that pointed to loss of most of the MEN1 exons (Figs 1 and 3). As stated earlier, to exclude the presence of a germline deletion as the first hit (that could be missed by mutational analysis), the same methodology was applied to the corresponding leukocyte DNA. MLPA analysis of germline DNA did not show any sequence deletions, indicating that both events occur at the somatic level (Fig. 1).

Somatic intragenic deletions were further suspected in three additional cases (cases 1, 13 and 18), by analysis of the D418D polymorphic marker localised in exon 9 of MEN1 gene. Those three patients, that present a heterozygous pattern (C/T) for the D418D variant in the germline, presented a hemizygous profile in the tumour DNA. These observations together with the identification of a somatic intragenic deletion by MLPA in case 17 led to the analysis of all the remaining tumours for LOH using MLPA. MEN1 intragenic deletions were identified in seven additional cases, indicating the presence of LOH in 54% (13/24) of the parathyroid tumours analysed: nine (69%) of these tumours were adenomas and the remaining four (31%) hyperplastic glands. Despite the different extents of these deletions, and their spread throughout the gene, they compromise mainly the terminal portion of the gene, being exons 2 and 3 maintained in most cases (Fig. 3). Results for cases 16 and 19 were done only once due to the scarcity of biological material. The tumours were further analysed for LOH using three microsatellites polymorphic loci from chromosome 11q13. All tissues were informative for at least one polymorphic marker.

In order to discard the possibility of MSI in the cases, that could lead to LOH misinterpretation, a set of five well-established quasimonomorphic microsatellites loci (29) were amplified in the tumours’ DNA and none of them showed signs of MSI at any of the microsatellite loci analysed. We did not verify any correlation between the molecular alterations previously described and the histopathology of the lesions.

Genetic alterations in β-catenin and p27kip1

DNA sequencing analysis did not reveal any mutation in exon 3 of CTNNB1 gene in the 24 studied tumours. The sequencing analysis of CDKN1B gene only revealed the presence of the variant already observed at the germline level, the V109G (SNP ID: rs2066827). The informative heterozygous genotypes in the germline were maintained at the somatic level, indicating retention of heterozygosity.

Immunohistochemical study of menin, β-catenin, p27kip1, cyclin D1, parafibromin and Ki-67

MEN1 mutations and/or deletions in parathyroid tumours are likely to result in a reduced (or absent)
expression of menin. Using an antibody against the N-terminal region of the protein, nuclear and cytoplasmic immunoreactivity was detected in all except one parathyroid tumour, with a variable number of immunoreactive cells. However, compared with normal parathyroid tissue, the tumours evidenced a clear down-regulation of this protein (Fig. 3).

β-Catenin staining evidenced a clear membrane pattern in all the samples and the intensity of the staining ranged from weak to strong in 40–100% of the tumour cells (Tables 2, 3 and Fig. 2). Nuclear localisation of the protein was not observed in any case. All tumour samples expressed nuclear p27kip1 protein staining, ranging from 14 to 98% of positive tumour cells (Table 2 and Fig. 3).

In nine tumours, no cyclin D1 expression was detected, where the remaining 15 tumours showed positive expression of varying intensity. In three of the positive cases (two adenomas and one hyperplastic gland), nuclear overexpression (in 20–35% of the tumour cells) was detected (Tables 2, 3 and Fig. 2).

In normal parathyroid tissue, parafibromin immunoreactivity displays a clear nuclear localisation. This staining pattern was maintained in all tumours that showed positivity in 70–100% of the tumour cells (Tables 2, 3 and Fig. 2). The 14 parathyroid tumours (12 adenomas and two hyperplastic glands) analysed for Ki-67 expression revealed low nuclear immunoreactivity (ranging from 0.02 to 4.2%) (Tables 2 and 3). No correlation was found between immunostaining with any of the above-mentioned antibodies and the molecular alterations detected in the respective tumours.

Discussion

The most common form of presentation of pHPT is as a sporadic disorder caused by parathyroid adenoma and less frequently by hyperplasia and carcinoma, but the molecular alterations underlying the sporadic forms remain largely unknown (30). In this study, we verify

Figure 1 Somatic inactivation of both MEN1 alleles in case 17 leads to the absence of menin protein expression with consequent loss of immunoreactivity. As demonstrated in (A), using normal parathyroid tissue (wild type) as a reference, loss of menin expression was observed when compared with the tumour bearing MEN1 mutation (mutated MEN1). The images are in the original magnification 200× (upper images) and 400× (lower images); (B) MEN1 direct sequencing detected the presence of a deletion in the somatic counterpart (c.115_163del49bp mutated MEN1). The presence of the hemizygous deletion suggests inactivation of the other allele; (C) MLPA analysis confirmed the presence of a MEN1 large deletion at the somatic level, leading to the ablation of the second allele. Such loss was not observed in the respective germline and the control case. Black arrows point to the exons detected to be lost by the MLPA probes. Full colour version of this figure available via http://dx.doi.org/10.1530/EJE-12-0327.

Figure 2 Representative areas of parathyroid tumours, exemplifying immunostaining for β-catenin, cyclin D1, parafibromin and p27kip1 proteins. All images are presented with an original magnification of 400×. From the immunohistochemistry results, we can observe: (A) β-catenin membranar immunostaining in 100% of the tumour cells; (B) overexpression of cyclin D1 protein in 20% of the parathyroid tumour cells; (C) intense parafibromin staining in 100% of the tumour cells; and (D) expression of p27kip1 protein in about 62% of the tumour cells. Full colour version of this figure available via http://dx.doi.org/10.1530/EJE-12-0327.
that somatic intragenic deletions of MEN1 gene appear as the most frequent genetic event in sporadic pHPT.

In order to exclude the family origin of the parathyroid tumours in our series, a search for germline mutations in MEN1, RET and CDKN1B genes was carried out and none of the cases corresponded to MEN2 or MEN4 syndromes. Germline studies for other familial syndromes, like familial hypocalciuric hypercalcaemia, neonatal severe HPT and HPT-JT, which can comprise pHPT as a clinical manifestation, were not performed due to the absence of familial and clinical data supporting such diagnoses.

The MEN1 molecular studies report several types of MEN1 mutations, which are scattered throughout the entire gene region. So far, neither hot spots have been described nor phenotype–genotype correlations have been established (31). About 40% of MEN1 mutations are frameshift due to small deletions or insertions (18). MEN1 large germline deletions compromise about 4% of the genetic defects (32), and as it has been previously reported (33, 34), they are only detected using gene dose assays. Despite their role in MEN1 syndrome, mutations in this gene have also been identified in about 20% of familial isolated HPT cases (35, 36).

The D418D polymorphism detected in 70% of our cases constitutes a relatively common polymorphism with no effects on protein (37). Correa et al. (38) demonstrated that MEN1 D418D was associated with pHPT, representing a genetic risk factor for the disease. Although we have not evaluated the frequency of the polymorphism in a control series, the allelic frequencies found for D418D in pHPT patients are similar to those described for European control populations (http://www.ncbi.nlm.nih.gov/snp).

Two of the 24 tumours presented somatic mutations in MEN1 gene: a 4 bp (c.249_252delGTCT) deletion without LOH and the other a 49 bp (c.115_163del49bp) deletion with loss of the wild-type allele. These frameshift mutations will lead either to truncated proteins with loss of functional domains, ablation of nuclear localisation signals in the C-terminal or result in loss of the translated protein due to nonsense-mediated mRNA decay (39). Additionally, it is known that both mutations occurred in a repetitive DNA sequence, consistent with a replication-slippage model of mutagenesis (18). In our series of parathyroid tumours, 8% of the cases presented somatic MEN1 mutations, which contrast with the 35% recently described by Newey et al. (40). At least two factors can explain these differences: on one hand, Newey et al. used whole-exome sequencing studies that can be much more sensitive, namely, detecting somatic mutations in heterogeneous tumours. On the other hand, the authors evaluated only uniglandular disease whereas 20% of our cases correspond to multiglandular disease (hyperplasia). The role of MEN1 mutations in these two entities remains to be fully comprehended.

The finding of the hemizygous 115_163del49bp-mutated allele raised the hypothesis of a large germline deletion as the first hit that would have been missed by the conventional screening methods. The germline and somatic MLPA results enabled the exclusion of a germline large deletion, confirming the occurrence of the two inactivating events at the somatic level. These results were further confirmed with the microsatellite markers. The somatic biallelic inactivation detected seems to abolish menin expression as the immunostaining was lost in the tumour area (Fig. 1A), confirming the tumour suppressor role of MEN1 in parathyroid tumorigenesis.

Taking into consideration the results obtained, a question was raised concerning the extent of such MEN1 deletions in our series. Using MLPA assay both in germline and in somatic DNA, the presence of intragenic MEN1 somatic deletions in 54% of the tumours was detected, pointing to MEN1 intragenic deletions as the most frequent event in sporadic pHPT tumours. Therefore, two challenging observations have drawn our attention: the presence of discontinuous MEN1 intragenic deletions and its possible role as a haploinsufficient gene in parathyroid tumorigenesis.

Gene deletions, either single-exon or partial/whole-gene deletions, are reported for several tumour suppressors namely in colorectal (MLH1 and MSH2) (41), breast and ovarian cancers (BRCA1 and BRCA2) (42). Additionally, it is known that Alu repeats are associated with genetic rearrangements that can create opportunities for unequal homologous recombination that can occur at intrachromosomal level, leading to gain or loss of exons in a gene (43). The plausibility of this hypothesis regarding MEN1 gene was advanced by Fukuchi et al. (44) that verify Alu repetitive elements scattered around MEN1 gene, suggesting a role for Alu sequences in MEN1 genetic deletions. Altogether, these data may support the discontinuity of MEN1 intragenic deletions found in our work. Although MLPA analysis represents a powerful tool in genetic analysis being used in numerous studies (45, 46), the confirmation of the observed intragenic deletions would require the subcloning of PCR products in plasmids and further sequencing. These experiments could not be performed due to scarcity of tumour tissue and large size of deletion, making it difficult to obtain a reliable PCR.

Table 2 Evaluation of protein expression levels in the series of the parathyroid tumours.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Positive cases</th>
<th>Stained tumour cells (%)</th>
<th>Protein subcellular location</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-Catenin</td>
<td>24/24</td>
<td>40–100</td>
<td>Membranar</td>
</tr>
<tr>
<td>p27kip1</td>
<td>24/24</td>
<td>14–98</td>
<td>Nuclear and cytoplasmic</td>
</tr>
<tr>
<td>Cyclin D1</td>
<td>15/24</td>
<td>2–35</td>
<td>Nuclear</td>
</tr>
<tr>
<td>Parafibromin</td>
<td>24/24</td>
<td>70–100</td>
<td>Nuclear</td>
</tr>
<tr>
<td>Ki-67</td>
<td>14/14</td>
<td>0.02–4.2</td>
<td>Nuclear</td>
</tr>
</tbody>
</table>

www.eje-online.org
product from FFPE. Also, the analysis by RT-PCR is not feasible, as RNA from the tumours is not available.

The other critical question is whether the observed MEN1 intragenic deletions compromise one or both alleles. As mentioned earlier, MLPA is a powerful tool but is not able to discriminate if the observed discontinuous exonic deletions involve only one or both alleles. The fact that MEN1 has been extensively described as a ‘classical’ tumour suppressor gene made us interpret our findings as intragenic biallelic inactivating deletions leading to protein down expression.

On the other hand, the hypothesis of monoallelic discontinuous intragenic deletions raises a critical question: the possibility that MEN1 haploinsufficiency can be enough for parathyroid tumours development, which, as far as we are aware, was never described in pHPT. However, the discontinuity data regarding MEN1 deletions presented in this study are preliminary and need further proof using independent methods.

The menin immunohistochemical results obtained in our work – all the cases, except one, evidence menin down expression compared with the only normal

<table>
<thead>
<tr>
<th>Age</th>
<th>Pathology</th>
<th>D11S956</th>
<th>PYGM</th>
<th>MLPA probes</th>
<th>RH27780</th>
<th>Mutations</th>
<th>MEN1 IHC (extension / intensity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>54% / ++</td>
</tr>
<tr>
<td>87</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100% / +</td>
</tr>
<tr>
<td>77</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>c.249-252delGTCT</td>
<td>72% / ++</td>
</tr>
<tr>
<td>57</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100% / +</td>
</tr>
<tr>
<td>70</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64% / ++</td>
</tr>
<tr>
<td>61</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28% / ++</td>
</tr>
<tr>
<td>77</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100% / ++</td>
</tr>
<tr>
<td>54</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>62% / ++</td>
</tr>
<tr>
<td>53</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25% / ++</td>
</tr>
<tr>
<td>32</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32% / ++</td>
</tr>
<tr>
<td>62</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100% / ++</td>
</tr>
<tr>
<td>47</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40% / ++</td>
</tr>
<tr>
<td>60</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35% / +</td>
</tr>
<tr>
<td>46</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100% / ++</td>
</tr>
<tr>
<td>76</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ND</td>
</tr>
<tr>
<td>68</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>c.115-163del49bp</td>
<td>0% / –</td>
</tr>
<tr>
<td>58</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21% / ++</td>
</tr>
<tr>
<td>82</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>61% / ++</td>
</tr>
<tr>
<td>45</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ND</td>
</tr>
<tr>
<td>50</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41% / +</td>
</tr>
<tr>
<td>72</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29% / +</td>
</tr>
<tr>
<td>64</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45% / ++</td>
</tr>
<tr>
<td>62</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100% / ++</td>
</tr>
<tr>
<td>89</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100% / ++</td>
</tr>
</tbody>
</table>

Figure 3 Data on allelic deletions, mutations and expression of MEN1 gene in the 24 parathyroid tumours.

Legend:
- Normal
- LOH with MLPA
- LOH with MLPA and LOH for D418D
- Ambiguous MLPA
- Non-informative marker

MLPA probes from exons 10 to 2

10 9 8 7 5 4 3 2

+ Analysis of MLPA was only performed once.
A, adenoma; M, multiglandular hyperplasia; ND – not determined.
Remarkably, Gao et al. CpG hypermethylation remains to be clarified.

MEN1 Methylation of genes involved in parathyroid tumor— that disruption of promoter hypermethylation is responsible for menin down-regulation in parathyroid tumors. Disruption of promoter activity, either by hypermethylation or by mutations of regulatory elements, is a common inactivating mechanism of tumour suppressor genes. Previous works demonstrate (48) that MEN1 promoter methylation can occur in pancreatic tumors, evidencing MEN1 as a methylation-prone tumor suppressor gene. The consequence of CpG island hypermethylation is down-regulation of gene expression and it has been shown to function as a second hit event that leads to biallelic inactivation in some tumour suppressor genes (49, 50, 51, 52). Methylation of genes involved in parathyroid tumorigenesis has not been extensively studied, and the role of MEN1 CpG hypermethylation remains to be clarified. Remarkably, Gao et al. (53) evidenced that MEN1 promoter hypermethylation is responsible for menin down-expression in melanoma cells. The hypothesis that disruption of MEN1 promoter activity by mutation could constitute the ‘second hit’ in parathyroid tumors is plausible, but to our knowledge, the majority of the works developed so far did not reveal any divergence from the wild-type promoter sequence. Only Jager et al. (54) described the presence of a MEN1 regulatory mutation. These are important aspects to further elucidate the mechanism of MEN1 inactivation.

To our knowledge, this is the first report describing MEN1 intragenic deletions as a very frequent somatic event in parathyroid tumors in patients with sporadic pHPT. Further studies will be very relevant to verify the reproducibility of our findings and to analyse the biological effects of these intragenic deletions in pHPT.

Declarations of interest
The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding
This study was supported by an IPG-UP Grant (IPG2007-32, with financial support from CGD) and by Portuguese Foundation for Science and Technology through project grant. IPATIMUP is an Associate Laboratory of the Portuguese Ministry of Science, Technology and Higher Education that is partially supported by the FCT.

References

7 Georgitis M. MEN-4 and other multiple endocrine neoplasias due to cyclin-dependent kinase inhibitors (p27(Kip1) and p18(INK4C)) mutations. Best Practice & Research. Clinical Endocrinology & Metabolism 2010 24 425–437. (doi:10.1016/j.beem.2010.01.001)

