A longer interval without GH replacement and female gender are associated with lower bone mineral density in adults with childhood-onset GH deficiency: a KIMS database analysis

Nicholas A Tritos, Amir H Hamrahian1, Donna King4, Susan L Greenspan2, David M Cook3, Peter J Jönsson4, Michael P Wajnrajch5, Maria Koltowska-Häggstrom4 and Beverly M K Biller

Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Zero Emerson Place, Suite 112, Boston, Massachusetts 02114, USA, 1Department of Endocrinology, Diabetes and Metabolism, Cleveland Clinic, Cleveland, Ohio, USA, 2Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA, 3Department of Endocrinology, Oregon Health and Science University, Portland, Oregon, USA, 4Pfizer Inc., Sollenuna, SE-191 90, Sweden and 5Pfizer Inc., New York City, New York, USA

(Correspondence should be addressed to N A Tritos; Email: ntritos@partners.org)

Abstract

Objective: Childhood-onset GH deficiency (COGHD) is associated with low bone mineral density (BMD). Adults with persistent COGHD may be at risk for insufficient bone accrual or bone loss during adulthood. The purpose of this study was to identify BMD predictors and to characterize the effects of GH replacement on BMD in COGHD adults with persistent GHD.

Design: Retrospective analysis of the KIMS database.

Methods: Variables predicting standardized BMD (sBMD) were identified. The effect of GH replacement (3 years) on BMD was examined.

Results: Three hundred and fourteen COGHD adults (148 women, 166 men; 62 non-naïve, 178 semi-naïve, and 74 true naïve, depending on length and timing of previous GH replacement), who had BMD measured in lumbar spine (LS) and femoral neck (FN) at study entry. In semi-naïve subjects, a longer gap in GH replacement between childhood and adulthood was predictive of lower sBMD in the FN ($r = -0.18$, $P = 0.038$). TSH deficiency predicted lower sBMD in the LS ($r = -0.16$, $P = 0.052$). In true naïve patients, a longer gap between onset of pituitary disease and study entry ($r = -0.35$, $P = 0.012$), and female gender ($r = -0.27$, $P = 0.043$) independently predicted lower sBMD in the FN. There were no differences in BMD increases between non-naïve, semi-naïve, and true naïve subjects on GH replacement.

Conclusions: In semi-naïve subjects a longer interval off GH replacement was associated with lower sBMD in the FN. Among true naïve patients, a longer gap between the onset of pituitary disease and GH replacement, and female gender predicted lower sBMD in the FN.

European Journal of Endocrinology 167 343–351

Introduction

GH deficiency (GHD) of either childhood or adult onset is associated with low bone mineral density (BMD), which may be more severe in childhood-onset GHD (COGHD) in comparison with adult onset GHD (1). Up to ~40% of patients with COGHD may have persistent GHD when retested in adulthood (2, 3, 4). As GH may have an important role in optimizing bone accrual in individuals who have completed their statural growth (5), patients with COGHD persisting in adulthood may be at risk for insufficient bone accrual or bone loss as a result of discontinuation of GH replacement after completion of linear growth.

GH acts on bone both directly and indirectly via endocrine and paracrine syntheses of insulin-like growth factor 1 (IGF1) (6, 7, 8, 9, 10). In addition to GH and IGF1, several other hormones have significant effects on bone mineralization, including thyroid hormone, glucocorticoids, and sex steroids (11, 12, 13, 14). Patients with COGHD may have multiple pituitary hormone deficiencies in addition to GHD, the presence of which, along with hormone replacement therapies, may influence BMD in this population.

Studies on patients with COGHD and persistent GHD after the completion of linear growth have yielded mixed results with regards to BMD outcomes in response to GH replacement, with some (15, 16, 17), but not all (18), studies suggesting that the resumption of GH replacement in young adulthood may lead to additional increases in BMD.

To further clarify whether patients with COGHD persisting in adulthood are at risk for developing lower BMD in adulthood as a result of interruptions in
GH replacement and characterize the role of additional pituitary hormone deficiencies on BMD in this population in a clinical practice setting, data from the large KIMS database were extracted and analyzed. This database comprises over 16,000 adult GHD patients, including approximately 3,000 COGHD individuals. To further investigate the effects of GH replacement in this population, data regarding BMD changes on GH replacement in adulthood were examined in these patients, who were stratified based on the presence of previous GH replacement and the length of treatment gap (interval) between GH replacement in childhood and adulthood.

Materials and methods

Subjects

The Pfizer International Metabolic Study (KIMS) database was queried for adult subjects of both genders, meeting all the following inclusion criteria: persistent GHD of childhood onset (based on stringent diagnostic criteria (19), Supplementary Table 1, see section on supplementary data given at the end of this article) as previously described (20) and recent BMD data available at KIMS entry (BMD measured by dual energy X-ray absorptiometry (DXA) on a Hologic, Lunar/GE or by Norland densitometer within 6 months before to 1 month after beginning GH replacement in adulthood).

A subpopulation was then identified, additionally meeting the following inclusion criteria: continuous (at least 90% of the time) GH replacement for 3 years since KIMS entry and BMD data available at 3 years since study entry, measured by DXA on the same densitometer used to acquire baseline BMD data.

All study subjects had provided written informed consent at the time of enrollment into KIMS. The study was conducted according to the principles of the Declaration of Helsinki (21). The majority of subjects were enrolled in European study centers.

Methods

The KIMS database was queried to extract demographic and clinical data on all study subjects, based on information submitted by each participating clinical center. Data extracted included age at diagnosis of pituitary disease, age at diagnosis of GHD, age at KIMS entry, duration of GHD (estimated as the difference between age at KIMS entry minus age at diagnosis of GHD), duration of GH replacement in childhood, gap (interval) between GH replacement in childhood and adulthood (i.e. KIMS entry), gender, body weight, height SDS and body mass index (BMI), prevalent fracture, cause of GHD, peak GH response on stimulation testing, type and number of additional pituitary hormone deficiencies, glucocorticoid replacement dose (converted to hydrocortisone equivalent dose, using a relative potency for cortisone acetate: hydrocortisone: prednisone or prednisolone: dexamethasone of 25 mg: 20 mg: 5 mg: 0.6 mg), and levothyroxine replacement dose (when available) (22). Study subjects were classified as being non-naïve (treated continuously or being off GH replacement shorter than 6 months before enrollment into KIMS), semi-naïve (treated in childhood, but being off GH replacement longer than 12 months before KIMS entry), and true-naïve (patients never treated in childhood, who were beginning GH replacement at KIMS entry).

Laboratory data included IGF1 SDSs calculated based on serum IGF1 levels measured centrally in the laboratories listed below.

Serum IGF1 levels were assayed at Kabi Pharmacia, Stockholm, Sweden between 1994 and October 1997. Thereafter, IGF1 assays were performed at Sahlgrenska University Hospital, Gothenburg, Sweden. Between 1994 and November 2002, a RIA was used to assay IGF1 in serum specimens after acid/ethanol precipitation of IGF-binding proteins (Nichols Institute, San Juan Capistrano, CA, USA) (16). Subsequently (until September 2006), a chemiluminescence immunoassay was employed (Nichols Advantage System). Thereafter, the Immulite 2500 (DPC Siemens, Deerfield, IL, USA) method has been used to measure serum IGF1 levels.

The following formulae were used to calculate IGF1 SDS:

\[
SDS = \frac{(\ln(IGF1) - (5.95 - 0.0197 \times \text{age}))}{0.282}
\]

(between 1994–1997);

\[
SDS = \frac{(\ln(IGF1) - (15.92 - 0.0146 \times \text{age}))}{0.272}
\]

(between 1997–2002); and

(from 2002 onwards) based on data from the study of Brabant et al. (23).

Bone densitometric data extracted included BMD and Z scores from two skeletal sites (including posterior–anterior lumbar spine (LS) and femoral neck (FN)). At any skeletal site, measured BMD values vary between different densitometers, as diverse bone edge detection algorithms and calibration standards are employed by densitometer manufacturers. Predictive equations have been developed in order to facilitate direct comparisons between BMD data obtained on different densitometers (24, 25). These equations yield standardized BMD (sBMD) values, which can be used in population studies. Herein, sBMD data were calculated based on BMD values and the predictive equations for LS and FN, as previously described (20, 24, 25).

Statistical analysis

The Student's t-test was used to analyze normally distributed data and the Wilcoxon rank-sum test or the sign rank test was used in the analysis of non-parametric variables. Univariate as well as stepwise, multivariate regression analysis was used to identify variables independently predicting sBMD (in LS or FN). Independent variables introduced in the multivariate regression analysis model were subject age, age at onset
of pituitary disease, age at diagnosis of GHD, gender, height SDS (calculated based on published reference data) (26), interval between onset of pituitary disease and study entry, estimated GHD duration, estimated duration of pediatric GH replacement, cause of GHD (idiopathic vs all others), gap (interval) length between GH replacement in childhood and KIMS entry, peak GH level on stimulation testing, and the presence or absence of deficiencies of gonadotropins, corticotropin, GH, TSH, or antidiuretic hormone. Nominal variables were assigned numerical codes for the purpose of analysis.

Table 1 Characteristics of the study population stratified by the gap length between GH replacement in childhood and adulthood. Study subjects were classified as being non-naive (treated continuously or being off GH replacement shorter than 6 months before enrolment into KIMS), semi-naive (treated in childhood but being off GH replacement longer than 12 months before KIMS entry), and true-naive (patients never treated in childhood, who were beginning GH replacement at KIMS entry).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Non-naive (n=62)</th>
<th>Semi-naive (n=178)</th>
<th>True naive (n=74)</th>
<th>Non-naive vs semi-naive</th>
<th>Semi-naive vs true naive</th>
<th>True naive vs non-naive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at onset of pituitary disease (years)</td>
<td>9.6 (2.9, 16.8)</td>
<td>9.1 (3.6, 14.8)</td>
<td>14.4 (7.5, 17.3)</td>
<td>NS</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Age at diagnosis of GHD (years)</td>
<td>14.0 (4.8, 23.0)</td>
<td>14.5 (5.9, 32.3)</td>
<td>21.2 (15.6, 45.7)</td>
<td>NS</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Age at study entry (years)</td>
<td>22.5 (18.4, 39.6)</td>
<td>27.5 (19.8, 39.8)</td>
<td>30.6 (18.2, 51.6)</td>
<td>0.022</td>
<td>0.095</td>
<td><0.010</td>
</tr>
<tr>
<td>Estimated duration of GHD (years)</td>
<td>11.7 (4.7, 25.8)</td>
<td>12.2 (4.0, 24.2)</td>
<td>1.5 (0.6, 16.8)</td>
<td>NS</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Total years GH replaced before study entry</td>
<td>8.0 (1.1, 14.0)</td>
<td>6.0 (2.0, 12.0)</td>
<td>0 (0, 0)</td>
<td>0.096</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>IGF1 SDS at study entry</td>
<td>−1.4 (−4.9, 1.8)</td>
<td>−4.1 (−6.3, −2.3)</td>
<td>−4.1 (−7.0, −2.3)</td>
<td><0.001</td>
<td>NS</td>
<td><0.001*</td>
</tr>
<tr>
<td>Number of additional pituitary hormone deficiencies</td>
<td>3 (0, 4)</td>
<td>3 (0, 4)</td>
<td>3 (0, 4)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>163 (150, 177)</td>
<td>162 (149, 176)</td>
<td>159 (139, 174)</td>
<td>NS*</td>
<td>0.038*</td>
<td>0.030*</td>
</tr>
<tr>
<td>Height SDS at study entry</td>
<td>−0.86 (−3.18, 0.52)</td>
<td>−1.30 (−3.47, 0.28)</td>
<td>−1.63 (−4.40, 0.40)</td>
<td>NS*</td>
<td>0.070*</td>
<td>0.023*</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>24.1 (19.1, 33.5)</td>
<td>25.1 (19.3, 35.4)</td>
<td>27.4 (20.9, 34.9)</td>
<td>NS</td>
<td><0.010</td>
<td>0.011</td>
</tr>
<tr>
<td>Lumbar spine sBMD (mg/cm²)</td>
<td>989.5 (795.9, 1183)</td>
<td>1005 (817.4, 1247)</td>
<td>989.5 (809.4, 1190)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Lumbar spine Z score</td>
<td>−1.8 (−3.0, 1.6)</td>
<td>−1.2 (−2.3, 1.1)</td>
<td>−1.8 (−2.9, 0.4)</td>
<td>NS</td>
<td>0.087</td>
<td>NS</td>
</tr>
<tr>
<td>Proportion of subjects with lumbar spine Z score < −2.0</td>
<td>29.4%</td>
<td>17.6%</td>
<td>37.5%</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Femoral neck sBMD (mg/cm²)</td>
<td>885.6 (690.6, 1084)</td>
<td>866.9 (682.1, 1160)</td>
<td>840.9 (689.3, 1128)</td>
<td>NS</td>
<td>NS</td>
<td>0.099</td>
</tr>
<tr>
<td>Femoral neck Z score</td>
<td>−0.4 (−1.8, 1.3)</td>
<td>−0.9 (−2.8, 0.5)</td>
<td>−0.6 (−2.1, 1.3)</td>
<td>0.074*</td>
<td>NS*</td>
<td>NS*</td>
</tr>
<tr>
<td>Proportion of subjects with femoral neck Z score < −2.0</td>
<td>7.1%</td>
<td>20.4%</td>
<td>13.6%</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Proportion of subjects with prevalent fracture</td>
<td>16.4%</td>
<td>19.5%</td>
<td>29.2%</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

Data shown as median (10th and 90th percentiles). Unless otherwise noted, P values were obtained using the Wilcoxon rank-sum test. *P values were obtained using the t-test. NS, not significant.

Results

There were 314 adult subjects, all diagnosed with COGHD based on stringent criteria (Supplementary Table 1) as previously described (20). There were 148 women (47.1%) and 166 men (52.9%). The majority of study subjects was Caucasian from western European countries and were enrolled in 89 participating centers. Data on the causes of GHD in this population are shown in Fig. 1. The most common single cause of GHD was idiopathic (33.8%), followed by craniopharyngioma (20.4%). Pituitary adenoma was relatively uncommon (5.7%), as anticipated in a population of patients with COGHD, and was present in 14.9% of true naïve, 2.2% of semi-naïve, and 4.8% of non-naïve patients (P=NS).

Additional characteristics of the study population, stratified as being non-naïve (62 patients, 19.7%), semi-naïve (178 subjects, 56.7%), or true naïve (74 patients, 23.6%), are shown in Table 1.

True naïve subjects were older at the time of the onset of pituitary disease or at the time of diagnosis of GHD in

The Statistical Analysis System (SAS Institute, Inc., Cary, NC, USA) was used in all statistical procedures. Data were expressed as median (10th percentile, 90th percentile) or mean±S.E.M., and statistical significance was accepted at a P<0.05 level.

Figure 1 Causes of GHD in the study population (percent total) based on a previously defined classification list (33).
comparision with those in the other two groups (non-nàïve and semi-nàïve). In addition, true nàïve subjects were slightly older than semi-nàïve patients at the time of study entry, the latter also being slightly older than non-nàïve subjects at study entry. True nàïve subjects were shorter in height and heavier (based on BMI data) than patients belonging to the other two groups. Non-nàïve subjects had higher IGF1 SDS at time of study entry in comparison with those belonging to the other two groups, likely as a result of continuous GH replacement.

Glucocorticoid replacement therapy was reported in ~59% of subjects in all three groups (P = NS), of whom 81% were treated with hydrocortisone, 14% with cortisone acetate, and the remaining subjects with prednisolone or dexamethasone. Glucocorticoid dosing, expressed as hydrocortisone equivalent dose, was similar in all three groups (non-nàïve: 20 mg/day (10, 30 mg/day), semi-nàïve: 20 mg/day (10, 30 mg/day), true nàïve: 20 mg/day (10, 30 mg/day), P = NS).

At study entry, there were no significant differences in sBMD values between the three subject groups. However, non-nàïve patients showed a trend towards higher sBMD in the FN in comparison with true nàïve patients. In addition, semi-nàïve patients showed a trend towards higher BMD Z scores in the LS than true nàïve subjects, and non-nàïve patients showed a trend towards higher BMD Z scores in the FN than semi-nàïve subjects.

In semi-nàïve patients, there was a median (10th percentile, 90th percentile) gap (interval) of 8.2 years (2.1 and 20.8 years) between pediatric GH replacement and onset of GH replacement in adulthood. In this group, there was an association between duration of pediatric GH replacement and age at termination of pediatric GH replacement (r = 0.25, P = 0.001).

To examine the association between sBMD and the gap in GH replacement in this group, both univariate and multivariate regression analyses were conducted. On univariate analysis, there was a negative association between sBMD in the LS and the gap in GH replacement (r = −0.17, P = 0.027, Fig. 2a) as well as a negative association between sBMD in the FN and the gap in GH replacement (r = −0.23, P < 0.010, Fig. 2b).

On multivariate regression analysis, the negative association between sBMD and gap in GH replacement remained significant in the FN (r = −0.18, P = 0.038) but not in the LS. We also examined the association between sBMD in the FN and gap in GH replacement in the subgroup of subjects aged <25 years old at study entry (n = 79). The gap in GH replacement between pediatric and adult GH replacement in this population was 4.5 years (1.4 and 8.3 years). There was no association between sBMD and gap in GH replacement in this subject subgroup.

TSH deficiency (defined as the presence of low free thyroxine levels with inappropriately normal serum TSH) was an independent predictor of lower sBMD in the LS (r = −0.16, P = 0.036). However, in the final regression model, which additionally included peak GH level on stimulation testing as a possible predictor, the statistical significance of this observation became borderline (r = −0.16, P = 0.052). Of note, there was no association between sBMD and levothyroxine dose (in µg/kg) in these patients (data not shown).

To identify predictors of sBMD in the other two groups (non-nàïve and true nàïve subjects), additional regression analyses were conducted. In non-nàïve subjects, older age at study entry (r = 0.41, P = 0.027) and female gender (r = −0.40, P = 0.018) independently predicted sBMD in the FN (higher sBMD in older patients and lower sBMD in women) on multivariate regression analysis. No predictors of sBMD in the LS were identified in this group.
Table 2 Characteristics of the study subpopulation followed longitudinally (on GH replacement in adulthood after study entry). Study subjects were classified as being non-naïve (treated continuously or being off GH replacement shorter than 6 months before enrollment into KIMS), semi-naïve (treated in childhood but being off GH replacement longer than 12 months before KIMS entry), and true-naïve (patients never treated in childhood, who were beginning GH replacement at KIMS entry).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Non-naïve (n=26)</th>
<th>Semi-naïve (n=52)</th>
<th>True naïve (n=19)</th>
<th>Non-naïve vs semi-naïve P value</th>
<th>Semi-naïve vs true naïve P value</th>
<th>Non-naïve vs true naïve P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at onset of pituitary disease (years)</td>
<td>10.3 (2.7, 17.1)</td>
<td>8.8 (3.7, 13.6)</td>
<td>11.9 (5.9, 17.5)</td>
<td>NS</td>
<td><0.010*</td>
<td>NS</td>
</tr>
<tr>
<td>Age at diagnosis of GHD (years)</td>
<td>14.9 (4.1, 24.3)</td>
<td>13.4 (5.2, 30.7)</td>
<td>20.4 (15.3, 56.4)</td>
<td>NS</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Age at study entry (years)</td>
<td>24.9 (19.4, 44.7)</td>
<td>26.2 (19.4, 36.5)</td>
<td>30.6 (17.4, 57.6)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Estimated duration of GHD (years) before study entry</td>
<td>13.0 (1.2, 28.0)</td>
<td>11.9 (0.4, 22.0)</td>
<td>1.0 (0.0, 27.6)</td>
<td>NS</td>
<td><0.001</td>
<td><0.010</td>
</tr>
<tr>
<td>Total years GH replaced before study entry</td>
<td>7.8 (1.0, 14.0)</td>
<td>5.5 (2.0, 13.0)</td>
<td>0 (0, 0)</td>
<td>NS</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>IGF1 SDS at study entry</td>
<td>-0.6 (-4.0, 2.0)</td>
<td>-3.9 (-5.5, -1.7)</td>
<td>-3.5 (-4.3, -1.7)</td>
<td><0.010*</td>
<td>NS</td>
<td><0.010*</td>
</tr>
<tr>
<td>Number of additional pituitary hormone deficiencies</td>
<td>3 (0.4)</td>
<td>3 (0.4)</td>
<td>2 (0.4)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Height (cm) at study entry</td>
<td>165 (156, 177)</td>
<td>167 (148, 180)</td>
<td>161 (134, 173)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Height SDS at study entry</td>
<td>-0.78 (-3.14, 0.67)</td>
<td>-1.07 (-3.30, 0.40)</td>
<td>-1.62 (-5.09, 0.82)</td>
<td>NS</td>
<td>NS</td>
<td>NS*</td>
</tr>
<tr>
<td>BMI (kg/m²) at study entry</td>
<td>24.7 (18.9, 36.8)</td>
<td>25.2 (19.7, 35.4)</td>
<td>26.5 (20.0, 33.8)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>GH dose (mg/day) at 3 years</td>
<td>0.5 (0.3, 0.9)</td>
<td>0.8 (0.3, 1.0)</td>
<td>0.5 (0.1, 1.0)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>IGF1 SDS at 3 years</td>
<td>0.5 (-3.1, 1.9)</td>
<td>-0.4 (-3.6, 1.3)</td>
<td>-0.3 (-1.9, 1.9)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

Data shown as median (10th and 90th percentiles). Unless otherwise noted, P values were obtained using the Wilcoxon rank—sum test. *P values were obtained using the t-test.

In true naïve subjects, greater height SDS at study entry \((r=0.43, P<0.001)\) and higher peak GH level on stimulation testing \((r=0.35, P=0.003)\) independently predicted higher sBMD in the LS on multivariate regression analysis. In addition, a longer gap between the onset of pituitary disease and study entry \((r=-0.35, P=0.012)\), and female gender \((r=-0.27, P=0.043)\) independently predicted lower BMD in the FN of true naïve patients on multivariate regression analysis.

We also examined predictors of sBMD in the FN in the subgroup of true naïve subjects aged <25 years old at study entry \((n=29)\), using multivariate regression analysis. A longer gap between the diagnosis of GHD and onset of GH replacement in this subject subgroup \((r=-0.41, P=0.047)\) independently predicted lower sBMD in the FN. In addition, greater height SDS at study entry independently predicted higher sBMD in the FN \((r=0.44, P=0.048)\). Patient characteristics of the study subpopulation followed on GH replacement for 3 years after study entry, stratified as being non-naïve (26 patients, 26.8%), semi-naïve (52 subjects, 53.6%), or true naïve (19 patients, 19.6%), are shown in Table 2.

Data on the effects of GH replacement on BMD (absolute and percent changes) in the LS and FN are shown in Table 3. There were significant increases in BMD in the LS of all three patient groups, including non-naïve, semi-naïve, and true naïve patients. In addition, there were significant increases in BMD in the FN of non-naïve and semi-naïve subjects. However, in true naïve subjects there was a statistically non-significant increase in BMD in the FN. This finding did not change if true naïve subjects with IGF1 SDS < -1.0 at 3 years were removed (data not shown). There were

Table 3 Effects of 3 years of GH replacement in adulthood on BMD stratified by the gap length between GH replacement in childhood and adulthood. Study subjects were classified as being non-naïve (treated continuously or being off GH replacement shorter than 6 months before enrollment into KIMS), semi-naïve (treated in childhood but being off GH replacement longer than 12 months before KIMS entry), and true-naïve (patients never treated in childhood, who were beginning GH replacement at KIMS entry). P values shown refer to within-subgroup changes over baseline.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Non-naïve (n=26)</th>
<th>Non-naïve (n=52)</th>
<th>Semi-naïve (n=19)</th>
<th>Non-naïve vs semi-naïve P value</th>
<th>Semi-naïve vs true naïve P value</th>
<th>True naïve P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute change in lumbar spine BMD (g/cm²)</td>
<td>0.015 (-0.050, 0.120)</td>
<td>0.053 0.040</td>
<td><0.010 0.060</td>
<td>NS</td>
<td><0.001 0.170</td>
<td>0.029</td>
</tr>
<tr>
<td>Percent change in lumbar spine BMD (%)</td>
<td>1.59 (-3.55, 12.37)</td>
<td>0.035 3.91</td>
<td><0.001 6.00</td>
<td>NS</td>
<td><0.001 17.89</td>
<td>0.032</td>
</tr>
<tr>
<td>Absolute change in femoral neck BMD (g/cm²)</td>
<td>0.020 (-0.020, 0.210)</td>
<td>0.011 0.020</td>
<td>0.013 0.065</td>
<td>NS</td>
<td><0.140 0.150</td>
<td>0.177 (NS)</td>
</tr>
<tr>
<td>Percent in femoral neck BMD (%)</td>
<td>2.78 (-2.08, 22.45)</td>
<td><0.010 2.89</td>
<td>0.015 7.17</td>
<td>NS</td>
<td>(-13.5, 19.0)</td>
<td>0.173 (NS)</td>
</tr>
</tbody>
</table>

Data shown as median (10th and 90th percentiles). P values were obtained using the Sign rank test.
no predictors of BMD response to GH replacement identified on regression analysis (data not shown). There were no statistically significant differences between the changes (absolute or percent) in BMD (in the LS or FN) between the three groups, including non-naïve, semi-naïve, and true naïve patients (P = NS).

Discussion

COGHD persists in adulthood in a subset of patients, who may be at risk for developing lower BMD as a result of failure of bone mineral accrual or bone loss during delayed or interrupted GH replacement in adulthood. Such interruptions may be common among pediatric patients after the completion of statural growth, who may not continue to follow-up with their treating physician or transition their care to an adult endocrinologist (27).

The hypothesis of this study was that interruptions in GH replacement in adulthood may be detrimental to BMD. In addition, it was hypothesized that deficiencies of other pituitary hormones, besides GH, may influence BMD, as has been shown in a population of adult onset GHD subjects (20). To facilitate direct comparisons between BMD values obtained on densitometers from different manufacturers, densitometric data were converted to sBMD to allow cross-sectional analysis of BMD data (24, 25).

The study population was defined to include COGHD subjects with persistent GHD in adulthood, based on stringent diagnostic criteria, who were stratified based on the presence and length of treatment gap (interval) length between pediatric and adult GH replacement. This stratification resulted in three groups, including non-naïve, semi-naïve, and true naïve. In semi-naïve patients, a longer gap in GH replacement was associated with lower sBMD in the FN. In true naïve patients, a longer interval between the onset of pituitary disease and GH replacement in adulthood as well as female gender was independently associated with lower sBMD in the FN. In the LS of semi-naïve patients, TSH deficiency (central hypothyroidism) was independently associated with lower sBMD.

These findings are consistent with a relevant role of GH during bone mineral accrual in young adulthood (28) and suggest that interruptions in GH replacement during adulthood may be detrimental to bone health. It is possible that GH replacement may help to prevent bone loss and preserve bone mineralization during adulthood. On subgroup analysis, we found no association between the gap in GH replacement and sBMD in semi-naïve patients <25 years old at study entry. However, not only was the subgroup size considerably smaller but also the gap in GH replacement was considerably shorter. Thus, this additional analysis does not exclude the possibility that some of our patients failed to accrue bone mass during the gap period.

It is also conceivable that patients with longer gaps in GH replacement between childhood and adulthood were undertreated as children, thus accounting for their lower bone density. Of note, data on pediatric GH dose replacement were not available in our study. However, to account for this possibility, we have included height SDS and duration of pediatric GH replacement in our analysis and noted that our findings remained robust to this adjustment.

As such, these observations are of clinical significance. Based on the present data, an estimate of a safe gap in GH replacement (with regards to BMD) cannot be made. However, the current findings underscore the importance of minimizing the interval in GH replacement during adulthood, which might help to optimize skeletal outcomes. Taken together with previously published data suggesting that a gap in GH replacement may also be associated with less favorable systemic lipid profiles (29), our observations are consistent with the notion that interruptions in GH replacement during adulthood may be detrimental to overall health.

The mechanism mediating the association between TSH deficiency and lower sBMD is not clear and could involve a consequence of excessive or insufficient thyroid hormone replacement. It is also possible that GHD severity could be a confounder in the relationship between TSH deficiency and sBMD, as the degree of TSH deficiency has been associated with GHD severity (30). It may also be noted that exogenous thyroid hormone excess has been associated with lower BMD (12). As free thyroxine levels were not available in most patients, additional data are needed to clarify this association. Nevertheless, the present observations suggest that thyroid hormone replacement should be carefully titrated to minimize its possible adverse effects on bone health (14, 31).

An additional objective of this study was to examine the effects of GH replacement in COGHD subjects with persistent GHD in adulthood. This goal was considered to be of interest, as the findings of previous studies have not been consistent (Table 4) (15, 16, 17, 18). This study’s observations indicated that there was a significant increase in BMD in the LS of non-naïve, semi-naïve, and true naïve subjects after 3 years of GH replacement (without significant differences between the three groups) and are consistent with a relevant role of GH replacement in bone accrual in this population (27).

Broadly similar were the effects of 3 years of GH replacement on BMD in the FN, with the exception that the increase in FN BMD was not statistically significant in true naïve subjects. It may be noted that the subgroup of true naïve subjects followed prospectively was relatively small, which may have limited our ability to detect a statistically significant change in BMD or identify predictors of response to GH replacement. In addition, data on compliance with GH replacement throughout the study period were not available, nor
were data on calcium and vitamin D intake, all of which could influence the effects of GH replacement on BMD.

Strengths of this study include the stringent definition of GHD and the overall large study population. However, any study based on analysis of previously collected data has limitations, arising from the inclusion of subjects with available data, based on local clinical practice. As a result of applying stringent inclusion criteria, 10.5% of COGHD patients in the KIMS database were eligible to participate and were included in this analysis. In addition, the current data pertain to a population of predominantly Caucasian patients and may not be applicable to patients of other racial groups. True naive adult subjects with COGHD are rather atypical in practice, which justifies analysis of these data as a separate group in the authors’ opinion.

Another study limitation involves the lack of densitometer cross-calibration between participating centers. It may be noted that central quality control and cross-calibration procedures are generally employed in clinical trials. However, this study represents a pharmaco-epidemiological survey of data obtained in clinical practice. To mitigate the limitations arising from the lack of cross-calibration between densitometers, we have employed the sBMD methodology, as already described.

In pediatric GHD populations (areal), BMD (as measured by DXA) is influenced by patients’ height (27, 28). Our study population consisted of adult, rather than pediatric, COGHD patients. Nevertheless, to minimize any potential confounding effect of patients’ height, this variable was introduced as a potential predictor in all multivariate analyses.

It may be noted that sBMD values in true naive patients were not significantly decreased in comparison with those in semi-naive or non-naive patients at study entry. However, true naive patients were significantly older at the time of onset of pituitary disease and GHD diagnosis and had a shorter GHD duration in comparison with the other two groups at study entry. As a consequence, it is possible that true naive patients may have been relatively protected from the deleterious effects of untreated GHD on bone density.

This study’s findings explained a relatively small proportion of the total variability in sBMD, underscoring the potential role of additional genetic, nutritional, and lifestyle factors that may influence sBMD. Nevertheless, the aims of this study were limited to the investigation of the role of the gap (interval) in GH replacement as well as endocrine variables as potential predictors of bone mineralization.

A substantial proportion of our study subjects had Z scores <−2.0 in the LS. It has been suggested that isolated GHD of childhood or adult onset is associated with normal BMD (32). However, the majority of the subjects in this study had multiple pituitary hormone deficiencies limiting the applicability of the conclusions of the earlier article to our study (32). Of note, there were no available data on the time of fracture in our study population. Therefore, fracture incidence could not be estimated based on our data.

In conclusion, a longer gap in GH replacement in adults with COGHD persisting in adulthood (or a longer interval between the onset of pituitary disease and GH replacement in true naive patients) was negatively associated with bone mineralization (in FN) in this population. TSH deficiency was also associated with lower bone mineralization (in LS) in semi-naive subjects, albeit with borderline statistical significance. GH replacement for 3 years led to significant gains in BMD in most patient groups and skeletal sites. Overall, these findings, based on data from clinical practice, affirm the role of GH in optimizing bone accrual in COGHD patients in transition to adulthood and/or maintaining BMD during adulthood.

Supplementary data

This is linked to the online version of the paper at http://dx.doi.org/10.1530/EJE-12-0070.

Declaration of interest

Drs N A Tritos, A H Hamrahian, S L Greenspan, D M Cook, and B M K Biller were not compensated for their contributions to this manuscript. N A Tritos has been a recipient of research funding and lecture fees.
from Pfizer, Inc.; spouse is an employee of Pfizer, Inc. A H Hamrahan has been a recipient of lecture fees from Novartis, Ipsen, and Pfizer and has served as a consultant to Ipsen and Pfizer. S L Greenspan has been a recipient of research funding from Eli Lilly, Warner Chilcott, Tarsa and has consulted and served on an advisory board for Amgen and Merck. D King, M P Wajnrajch, P J Jonsson and M Kolowska-Haggstrom are full-time employees of Pfizer, Inc. B M K Biller has been a recipient of research funding from Pfizer, Eli Lilly, Novo-Nordisk and Serono and has served on an advisory board and received consulting fees from Pfizer and Novo-Nordisk.

Funding
KIMS is sponsored by Pfizer, Inc.

Acknowledgements
All authors of this study would like to express their gratitude to the clinicians who provided the primary data on their patients.

References

31 Duncan WE, Chang A, Solomon B & Wartofsky L. Influence of clinical characteristics and parameters associated with thyroid hormone therapy on the bone mineral density of women treated with thyroid hormone. Thyroid 1994 4 183–190. (doi:10.1089/thy.1994.4.183)

Received 26 January 2012
Revised version received 12 June 2012
Accepted 18 June 2012