Parameters for calcium metabolism in women with polycystic ovary syndrome who undergo clomiphene citrate stimulation: a prospective cohort study

J Ott1, L Wattar1, C Kurz1, R Seemann2, J C Huber1, K Mayerhofer1 and E Vytiska-Binstorfer1

Departments of 1Gynecologic Endocrinology and Reproductive Medicine and 2Craniomaxillofacial and Oral Surgery, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria

(Correspondence should be addressed to J Ott; Email: johannes.ott@meduniwien.ac.at)

Abstract

Objective: To evaluate whether parameters for calcium metabolism were associated with characteristics of polycystic ovary syndrome (PCOS).

Design: A prospective cohort study.

Methods: Ninety-one anovulatory, infertile women with PCOS patients underwent clomiphene citrate (CC) stimulation. Main outcome measures were parathyroid hormone (PTH); 25-hydroxyvitamin D3 (25OHD3); serum levels of calcium, phosphorus, magnesium, albumin, and total protein; the serum calcium–phosphorus product; LH; FSH; sexual hormone binding globulin; testosterone; and androstenedione.

Results: PTH correlated inversely with serum calcium \(r = -0.235; P = 0.004\) and 25OHD3 \(r = -0.664; P < 0.001\), whereas positive correlations were found between PTH and body mass index (BMI; \(r = 0.270; P = 0.010\)) and between PTH and testosterone \(r = 0.347; P = 0.001\). After stimulation with 50 mg CC, 57.1% (52/91) developed a follicle, whereas 26.4% (24/91) became pregnant. In a multivariate model to predict both follicle development and pregnancy, BMI and 25OHD3 deficiency were significant predictive parameters.

Conclusions: 25OHD3 deficiency was an independent predictive parameter of CC stimulation outcome, in terms of follicle development and pregnancy. Our results suggest a substantial role of vitamin D in PCOS and infertility treatment in these patients.

Introduction

Polycystic ovary syndrome (PCOS) is one of the most common female endocrinopathies (1). It has recently been demonstrated that elevated levels of phosphorus and parathyroid hormone (PTH) might be involved in the pathogenesis of the syndrome, possibly through their effects on insulin levels and insulin resistance. In women with PCOS, phosphorus was correlated negatively with insulin and insulin resistance and positively with 25-dihydroxyvitamin vitamin D3 (25OHD3) (2). Recently, it has been demonstrated that other parameters of bone metabolism, namely lower osteocalcin and elevated serum levels of its carboxylated form, were associated with androgen levels, insulin resistance, and ovarian morphology in PCOS women (3). These findings suggest a potential interaction between bone-derived markers and the metabolic/hormonal abnormalities observed in PCOS.

For infertile, anovulatory PCOS patients, clomiphene citrate (CC) is typically the first-line therapy (4). Several factors have been reported to predict fertility success after CC stimulation, including body mass index (BMI) and Hashimoto’s thyroiditis, among others (5, 6). However, it has not yet been clarified why some patients respond to CC while others do not.

Thus, the objective of our study was to confirm previous observations that parameters for calcium metabolism were associated with characteristics of PCOS. This included outcome after CC stimulation, i.e. follicle maturation and pregnancy.

Materials and methods

Study population

In a prospective cohort study, we evaluated possible associations between parameters for calcium metabolism and the characteristics of anovulatory women with PCOS who were undergoing CC stimulation. In this analysis, we included 91 anovulatory, infertile women with PCOS who were undergoing 123 cycles of CC stimulation at our department from December 2010...
until May 2011. PCOS was diagnosed according to the revised European Society of Human Reproduction and Embryology (ESHRE) and the American Society for Reproductive Medicine (ASRM) criteria of 2004 (4). Exclusion criteria were: previous CC stimulation or laparoscopic ovarian drilling; hyperprolactinemia; manifest hyperparathyroidism; previous thyroid or parathyroid surgery, as normal PTH levels do not exclude postoperative parathyroid dysfunction in these patients (7); current vitamin D or calcium supplementation; and concomitant male, tubal, and uterine factors of infertility. All women had undergone at least one cycle of monitoring, as described below, to document complete anovulation as part of the clinical routine at our department.

Study design

As the main outcome measures, we included parameters of calcium metabolism (PTH; 25-hydroxyvitamin D3 (25OHD3) with 25 nmol/l defining the lower limit of adequacy of vitamin D status (8) and 30 nmol/l defining a second cutoff point (9); serum calcium; serum phosphorus; the serum calcium–phosphorus product, as circulating calcium and phosphate concentrations are correlated inversely and the serum calcium–phosphorus product/precipitation of calcium and phosphate have been mentioned as a clinically important parameter in bone and calcium metabolism (10); serum magnesium; serum albumin; and total serum protein) and the PCOS (LH; FSH ratio; sexual hormone binding globulin (SHBG); testosterone; androstenedione; and insulin resistance as calculated from the indices homeostatic model assessment of insulin resistance (HOMA-IR) and quantitative insulin sensitivity check index (QUICKI)). The calculation of indices HOMA-IR and QUICKI was based on the equations: HOMA-IR = fasting insulin × fasting glucose/22.5, QUICKI = 1/log (fasting insulin) + log (glucose) (11, 12). Patients with both HOMA-IR ≥ 2.5 and QUICKI ≤ 0.333 were considered insulin resistant ≤ 0.333 (13). Blood was drawn on the third to the fifth day of the menstrual cycle before the initiation of CC stimulation. All serum parameters were determined using commercially available assays.

As possible predictive factors for CC stimulation outcome, the following parameters were included: age, BMI, insulin resistance, testosterone, and androstenedione (14); the LH:FSH ratio, PTH, serum calcium, 25OHD3, and 25OHD3 deficiency were new candidates for predicting the success of CC stimulation.

Menstrual bleeding was induced with oral administration of 20 mg dydrogesterone for 10 days. CC stimulation began with a dose of 50 mg/day from the fifth to the ninth day of the menstrual cycle. Beginning with the ninth day of the menstrual cycle, all patients underwent daily monitoring (including vaginal ultrasound for detection of follicular cysts and determination of morning LH, FSH, estradiol, and progesterone for documentation of ovulation) until a postovulatory rise in progesterone was seen. If ovulation did not occur despite the development of a large follicle, follicle rupture was induced using human chorionic gonadotrophin (15). The success of CC stimulation was defined as the development of a large follicle with a minimum diameter of ≥ 18 mm. The study was approved by the Institutional Review Board of the Medical University of Vienna (IRB number: 755/2010). Written informed consent was obtained from all patients.

Statistical analyses

Variables are described by median and ranges. For all tests, the open source statistical package R (R Project for Statistical Computing, Vienna, Austria) was used. To compare the two groups of both outcome variables (development of a follicle after CC stimulation, pregnancy), continuous variables were tested using Shapiro Wilk test of normality and, in case of normality, a Welch two-sample t-test was performed, whereas the Wilcoxon signed rank test with continuity correction was used in non-normal cases. To evaluate the influence of abnormal insulin resistance and hypovitaminosis D, Fisher’s exact test was used. Factors that were found to differ significantly for one of the two outcome variables were additionally tested in a multivariate logistic regression model to predict both outcome parameters. Nagelkerke’s R² test was used to assess goodness-of-fit, that is, how well the data were described by the model tested. It corresponds to a scaled Cox and Snell R². Nagelkerke R² can range from 0 to 1. To compare different multivariate models, the likelihood ratio test was used. For correlations, a Spearman’s rank test was used.

Patients were subdivided according to the following weight categories: underweight (BMI < 18.50 kg/m²), normal weight (BMI 18.50–24.99 kg/m²), overweight (BMI 25.00–29.99 kg/m²), and obese (BMI ≥ 30.0 kg/m²; World Health Organization, BMI classification; available online at http://apps.who.int/bmi/index.jsp?introPage=intro_3.html). Differences in calcium metabolism parameters between these groups were calculated using the Cochran–Armitage test for a linear trend in proportions, the Jonckheere–Terpstra test for increasing trend or decreasing trend. Differences were considered statistically significant if P < 0.05.

Results

Patient characteristics and basic findings

Details about patient characteristics at the initial visit are provided in Tables 1 and 2. All patients revealed PTH, serum calcium, phosphorus, serum calcium–phosphorus product, serum magnesium, serum albumin, and total
Overweight and obese patients were significantly higher PTH and lower 25OHD3 levels. Insulin-resistant patients revealed significantly more often insulin resistance and showed increased PTH levels. This might be explained by the fact that overweight and obese patients revealed significantly lower 25OHD3 levels (2, 17) compared with noninsulin-resistant women. One might consider the BMI (16). Our data partly confirm previous observations in PCOS women, including the positive correlation between PTH and testosterone as well as the fact that overweight and obese patients revealed significantly lower 25OHD3 levels (2, 17). However, increased PTH levels were not associated with insulin resistance in our data, in contrast to lower serum calcium levels. This might be explained by the fact that we did not analyze normal-weight patients separately. Although not statistically significant, lower 25OHD3 levels were found for insulin-resistant compared with noninsulin-resistant women. One might consider

Discussion

The inverse correlation between PTH and serum calcium, as well as the fact that all other calcium-linked parameters apart from 25OHD3 were within the normal ranges, indicated normal function of calcium metabolism in all patients at the initial visit. Notably, PTH was inversely correlated with SHBG. The same was found for SHBG and BMI (data not shown), whereas PTH and BMI were correlated positively. It has already been mentioned that SHBG is influenced by the BMI (16). Our data partly confirm previous observations in PCOS women, including the positive correlation between PTH and testosterone as well as the fact that overweight and obese patients revealed significantly lower 25OHD3 levels (2, 17). However, increased PTH levels were not associated with insulin resistance in our data, in contrast to lower serum calcium levels. This might be explained by the fact that we did not analyze normal-weight patients separately. Although not statistically significant, lower 25OHD3 levels were found for insulin-resistant compared with noninsulin-resistant women. One might consider

Table 2 Biochemical profile of patients at initial visit. The data are presented as median (range).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Normal range</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH (IU/l)</td>
<td></td>
<td>7.8 (0.7–18.7)</td>
</tr>
<tr>
<td>Testosterone (ng/ml)</td>
<td><0.5</td>
<td>0.5 (0.1–1.1)</td>
</tr>
<tr>
<td>Androstenedione (ng/ml)</td>
<td>0.3–3.3</td>
<td>2.8 (1.0–4.2)</td>
</tr>
<tr>
<td>Parathyroid hormone (pg/ml)</td>
<td>15.0–65.0</td>
<td>41.5 (16.9–64.8)</td>
</tr>
<tr>
<td>25-OH3 (nmol/l)</td>
<td>28.0–107.0</td>
<td>34.7 (0–106.6)</td>
</tr>
<tr>
<td>Serum calcium (mmol/l)</td>
<td>2.2–2.7</td>
<td>2.5 (2.3–2.7)</td>
</tr>
<tr>
<td>Total serum protein (g/l)</td>
<td>66–83</td>
<td>67.5 (49.2–91.7)</td>
</tr>
<tr>
<td>Serum albumin (g/l)</td>
<td>34.0–48.0</td>
<td>45.1 (40.2–52.9)</td>
</tr>
<tr>
<td>Serum magnesium (mmol/l)</td>
<td>0.7–1.0</td>
<td>0.9 (0.8–1.0)</td>
</tr>
<tr>
<td>Serum phosphorus (mmol/l)</td>
<td>0.8–1.5</td>
<td>0.9 (0.8–1.5)</td>
</tr>
<tr>
<td>Calcium–phosphorus product (mmol²/l²)</td>
<td>–</td>
<td>2.2 (1.7–3.7)</td>
</tr>
</tbody>
</table>

*Cycle dependent.
a larger number of subjects necessary in order to demonstrate a significant association between these groups of patients.

However, in our data set, PTH and serum calcium were not predictive for CC stimulation outcome. Instead, 25OHD3 seems to play a major role: low 25OHD3 levels were not predictive for CC stimulation outcome. Instead, groups of patients.

Table 3 Parameters of calcium metabolism according to BMI category. Weight categories are defined as follows: underweight, BMI < 18.50 kg/m²; normal weight, BMI 18.50–24.99 kg/m²; overweight, BMI 25.00–29.99 kg/m²; and obese, BMI ≥ 30.0 kg/m².

<table>
<thead>
<tr>
<th>Variable</th>
<th>Underweight (n = 2)</th>
<th>Normal weight (n = 25)</th>
<th>Overweight (n = 44)</th>
<th>Obese (n = 20)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin resistance (%)</td>
<td>0 (0)%</td>
<td>1 (4.0)%</td>
<td>19 (43.2)%</td>
<td>13 (65.0)%</td>
<td><0.001b</td>
</tr>
<tr>
<td>Parathyroid hormone (pg/ml)</td>
<td>43.2 (38.9–47.4)</td>
<td>35.6 (16.9–64.6)</td>
<td>42.6 (17.1–64.8)</td>
<td>46.9 (25.5–63.4)</td>
<td>0.006d</td>
</tr>
<tr>
<td>Serum calcium (mmol/l)</td>
<td>2.4 (2.3–2.5)</td>
<td>2.5 (2.3–2.6)</td>
<td>2.5 (2.3–2.7)</td>
<td>2.4 (2.3–2.6)</td>
<td>0.606d</td>
</tr>
<tr>
<td>25-OHD3 (nmol/l)</td>
<td>68.9 (28.8–105.0)</td>
<td>39.0 (0–106.6)</td>
<td>24.0 (0–103.0)</td>
<td>26.4 (0–47.8)</td>
<td>0.016a</td>
</tr>
<tr>
<td>25-OHD3 < 25 nmol/l</td>
<td>0 (0)</td>
<td>8 (32)</td>
<td>23 (52.3)</td>
<td>8 (40.0)</td>
<td>0.193b</td>
</tr>
<tr>
<td>25-OHD3 > 30 nmol/l</td>
<td>1 (50.0)</td>
<td>11 (44.0)</td>
<td>29 (43.2)</td>
<td>12 (60.0)</td>
<td>0.135b</td>
</tr>
</tbody>
</table>

Values in bold indicate statistical significance.

Table 4 Variables associated with induction of follicle development and gravidity in univariate analysis.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Yes (n = 52)</th>
<th>No (n = 39)</th>
<th>P</th>
<th>Yes (n = 24)</th>
<th>No (n = 67)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>0.007</td>
<td>0.001b</td>
<td></td>
<td>0.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>0.065</td>
<td>0.017</td>
<td></td>
<td>0.465</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin resistance (%)</td>
<td>0.007</td>
<td>0.003</td>
<td></td>
<td>0.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L/H:FSH ratio</td>
<td>0.060</td>
<td>0.043</td>
<td></td>
<td>0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testosterone (ng/ml)</td>
<td>0.360</td>
<td>0.736</td>
<td></td>
<td>1.465</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Androstenedione (ng/ml)</td>
<td>0.259</td>
<td>0.090</td>
<td></td>
<td>0.736</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parathyroid hormone (pg/ml)</td>
<td>0.411</td>
<td>0.059</td>
<td></td>
<td>0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serum calcium (mmol/l)</td>
<td>0.101</td>
<td>0.929</td>
<td></td>
<td>0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-OHD3 (nmol/l)</td>
<td>0.014</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-OHD3 < 25 nmol/l</td>
<td>0.003</td>
<td>0.003</td>
<td></td>
<td>0.029</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-OHD3 > 30 nmol/l</td>
<td>0.086</td>
<td>0.029</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P values in bold indicate statistical significance.

Values are given as median and ranges.

Values are given as absolute numbers and percentages.
been suggested that the association of hypovitaminosis D with features of PCOS may be associated with obesity but not with the presence of PCOS (27). In our data set, 25OHD3 deficiency remained significant in multivariate analyses. Furthermore, likelihood tests proved that 25OHD3 deficiency significantly increased the predictive values of the multivariate models. This suggests 25OHD3 as an independent predictive factor for CC stimulation outcome. All in all, the explained deviances according to Nagelkerke’s R^2 were 27% for follicle development and 37% for pregnancy. This indicates that a large fraction of the deviance was explained by the logistic regression models using only three parameters, i.e. age, BMI, and 25OHD3 deficiency. We consider the model consistent. This is substantiated by the similar odds ratios of univariate and multivariate analyses.

In conclusion, our data confirm the positive correlation between PTH and testosterone in anovulatory patients with PCOS. 25OHD3 deficiency was an independent predictive parameter of CC stimulation outcome, in terms of follicle development and pregnancy. Our results suggest a substantial role of vitamin D in PCOS and infertility treatment in these patients. However, one might argue that actually a relationship between calcium metabolism and fecundability rather than PCOS per se was observed. Thus, the impact of vitamin D and calcium metabolism should also be evaluated in non-PCOS women who undergo CC stimulation. Further studies are warranted to clarify the underlying mechanisms and evaluate possible associated therapeutic options. One treatment approach would be supplementation of vitamin D in deficient patients. This needs to be evaluated in the future.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

Author contribution statement

All authors substantially contributed to the conception and design of the project and manuscript. J Ott, L Wattar, E Ytyniska-Bünstofler, and R Seemann contributed to the acquisition of data. J Ott, C Kurz, J C Huber, and K Mayerhofer drafted and revised the article for intellectual content. All authors approved the final version to be published.

References

14 Palomba S, Falbo A, Orio F, Rolino A & Zullo F. Efficacy predictors for metformin and clomiphene citrate treatment in anovulatory
infertile patients with polycystic ovary syndrome. *Fertility and Sterility* 2009 91 2557–2567. (doi:10.1016/j.fertnstert.2008.03.011)

Received 14 December 2011
Revised version received 4 February 2012
Accepted 13 February 2012