The −258A/G (SNP rs12885300) polymorphism of the human type 2 deiodinase gene is associated with a shift in the pattern of secretion of thyroid hormones following a TRH-induced acute rise in TSH

Maya Y Peltzverger1,2, Peter W Butler1,3, Anna Teresa Alberobello1, Sheila Smith1, Yanina Guevara1, Ornella M Dubaz1, Javier A Luzon1, Joyce Linderman1 and Francesco S Celi1

1Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases and 2Reproductive and Adult Endocrinology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 10, CRC, RM 6-3940, 10 Center Drive, MSC 1613, Bethesda, Maryland, USA and 3Endocrine and Diabetes Division, Baystate Medical Center, Springfield, Massachusetts, USA

(Correspondence should be addressed to F S Celi; Email: fc93a@nih.gov)

Abstract

Objective: Type 2 deiodinase gene (DIO2) polymorphisms have been associated with changes in pituitary–thyroid axis homeostasis. The −258A/G (SNP rs12885300) polymorphism has been associated with increased enzymatic activity, but data are conflicting. To characterize the effects of −258A/G polymorphism on intrathyroidal thyroxine (T4) to triiodothyronine (T3) conversion and thyroid hormone (TH) secretion pattern, we studied the effects of acute, TRH-mediated, TSH stimulation of the thyroid gland.

Design: Retrospective analysis.

Methods: The TH secretion in response to 500 μg i.v. TRH injection was studied in 45 healthy volunteers.

Results: Twenty-six subjects (16 females and ten males, 32.8 ± 10.4 years) were homozygous for the ancestral (−258A/A) allele and 19 (11 females and eight males, 31.1 ± 10.9 years) were carriers of the (−258G/x) variant. While no differences in the peak TSH and T3 levels were observed, carriers of the −258G/x allele showed a blunted rise in free T4 (FT4; P < 0.01). The −258G/x92Thr/Thr haplotype, compared with the other groups, had lower TSH values at 60 min (P < 0.03). No differences were observed between genotypes in baseline TH levels.

Conclusions: The −258G/x DIO2 polymorphism variant is associated with a decreased rate of acute TSH-stimulated FT4 secretion with a normal T3 release from the thyroid gland consistent with a shift in the reaction equilibrium toward the product. These data indicate that the −258G DIO2 polymorphism causes changes in the pattern of hormone secretion. These findings are a proof of concept that common polymorphisms in DIO2 can subtly affect the circulating levels of TH and might modulate the TH homeostasis.

European Journal of Endocrinology 166 839–845
Thr92Ala DIO2, SNP rs2250144) causes a differential response in the TH secretion pattern following the acute rise in serum TSH levels in response to an injection of thyrotropin-releasing hormone (TRH) (10). In this secondary analysis of the original dataset, we characterize the role of the −258A/G (D2-ORFa-Gly3Asp, SNP rs12885300) (11) polymorphism in the pattern of TH release and explore the interaction between the two polymorphisms.

Materials and methods

Participants and study design

This study is a secondary analysis of a previously described dataset (10). Briefly, the study was approved by the NIDDK-NIAMS Institutional Review Board and conducted at the National Institutes of Health Clinical Center in Bethesda, MD. The research protocol was designed as a prospective cohort study (ClinicalTrials.gov identifier number NCT00812149).

Healthy volunteers aged 18–65, with normal baseline thyroid function and negative antithyroid peroxidase antibodies or thyroid-stimulating immunoglobulin, were invited to participate in the study. The study volunteers’ accrual was designed to achieve three groups of 15 subjects with the following DIO2 codon 92 genotype: Thr/Thr, Thr/Ala, Ala/Ala.

Study volunteers underwent an outpatient screening visit, at which a medical history was taken and physical examination performed. A blood sample was taken for basic metabolic and thyroid function, and a DNA sample was collected for DIO2 polymorphisms status. Eligible subjects were then invited to undergo a TRH stimulation test.

Blood sampling and laboratory testing

Blood samples were drawn under sterile technique through the i.v. catheter using the Vacutainer system (Becton Dickinson & Co, Franklin Lakes, NJ, USA). Screening tests, TSH, free T₄ (FT₄), T₃, antithyroid antibody panel, prolactin, and urine human chorionic gonadotropin in women were performed daily in the NIH Department of Laboratory Medicine. TSH, FT₄, and T₃ were analyzed daily by the Department of Laboratory Medicine by immunoassay on a Siemens Immulite 2500 analyzer platform (Siemens, Tarrytown, NY, USA). Intra- and interassay coefficients of variability for TSH were 4.2 and 3.5%, T₃ 11.2 and 5.4%, and FT₄ 16.43 and 2.58% respectively. Thyroid-stimulating immunoglobulin testing was performed by Mayo Medical Labs (Rochester, MN, USA). Cell pellets were stored in −80°C and processed in batch for genomic DNA isolation.

DNA isolation and DIO2 restriction fragment polymorphism analysis

Genomic DNA was isolated from peripheral mononuclear cells from the screening blood samples using the QIAamp system (Qiagen). After isolation, DNA concentration was measured using a NanoDrop spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). Purity was determined by measuring the 260/280 nm ratio. The −258A/G DIO2 polymorphism status was characterized using established methods (12) by PCR restriction fragment length polymorphism (RFLP) analysis. Ten nanograms of genomic DNA were amplified with the following primers: forward 5'-AAAGCTGGGATCTGAGTC-3' and reverse 5'-'-AAAGCATAGAGACAAAG-3'. After purification, PCR products were digested with CviKI-1 (New England BioLabs, Ipswich, MA, USA), restriction enzyme for 4 h at 37°C. The digestion products were separated on 4.5% agarose gel by electrophoresis and visualized by ethidium bromide staining. The Thr92Ala DIO2 polymorphism status was characterized using established methods (13) by PCR RFLP analysis. Ten nanograms of genomic DNA were amplified with the following primers: forward 5'-CTCAGGCTGCAAAAGTC-3' and reverse 5'-'-CCACACTCTATTAGAGGCCAT'T-3'. After purification, PCR products were digested with BsaI (New England BioLabs, Ipswich, MA, USA), and the digestion products were separated on a 1.5% agarose gel by electrophoresis.

TRH test procedure

The TRH test was performed at the NIH Clinical Center day hospital. After an overnight fast, subjects underwent testing while resting supine on a comfortable bed in a room maintained at a temperature of 23–25°C. Women of reproductive age had a repeat pregnancy test at admission. A saline lock i.v. catheter was inserted 15 min before the first blood draw. At time 0, 500 μg TRH was given i.v. over 1 min followed by a 10 cc normal saline flush. Blood samples were taken at −15, 0, 5, 10, 15, 20, 30, 60, 120, and 180 min for measurement of TSH, FT₄, and total T₃ (TT₃). Prolactin levels were measured at −15, 0, 60, and 180 min as an independent marker of TRH action. Blood pressure was monitored before administration of TRH and 30, 60, 120, and 180 min after the blood draws.

Statistical analysis

This is a secondary analysis of the original dataset (10), which was by design enriched in carriers of the Ala92 DIO2 allele. The −258A/G DIO2 (rs12885300) polymorphism is common in the general population (allele frequency 0.34) and it is not in linkage disequilibrium with the Thr92Ala variant (11). Thus, we reckoned a priori that ~ 50% of the study population
would carry the DIO2 -258G/G ancestral allele and the rest of the population carry the minor allele gene polymorphism either as homozygous or heterozygous (A/A or G/x). TRH stimulation test data are presented as delta from baseline (average -15 and 0 min). Data were log transformed where indicated. A two-tailed Student’s t-test was performed as primary analysis for changes in TH levels following the TRH injection. Nonparametric data were analyzed using Mann–Whitney U test. An α error of 0.05 was considered the threshold for statistical significance.

Results

Patient recruitment and characteristics

Forty-six eligible individuals from 83 study participants completed TRH testing. The dataset of one volunteer who underwent the TRH stimulation test was omitted from the analysis because of the presence of antithyroid peroxidase antibodies. Thus, the data of 45 volunteers were given an i.v. injection of 500 μg TRH with serial measurements of serum TT3, FT4, and TSH over 180 min were analyzed. The study population was composed of 26 subjects with the -258A/A genotype, age 32.8 ± 10.4 years (16 females and ten males) and 19 subjects with the -258G/x genotype, age 31.1 ± 10.9 years (11 females and eight males). The -258G/x genotype groups were as follows: ten subjects with 92Thr/Thr -258A/A, age 31.8 ± 7.5 years (six females and four males), 16 subjects with 92Ala/x -258A/A, age 33.5 ± 11.5 years (ten females and six males), five subjects with 92Thr/Thr -258G/x, age 34.0 ± 14.9 years (two females and three males), and 14 subjects with 92Ala/x -258G/x, age 30.1 ± 9.5 years (nine females and five males; Table 1).

Baseline parameters

As illustrated in Table 1, no significant difference was found in any of the studied baseline parameters among the genotype groups. Specifically, no significant differences between genotypes were noted in baseline serum TSH, FT4, or TT3 levels or in fasting glucose, fasting insulin, or HOMA levels.

Response to TRH testing

There was no significant difference in maximal (30 min) TRH-stimulated levels of serum TSH between the two groups (−258A/A 14.28 ± 6.93 vs -258G/x 13.23 ± 5.39 mIU/ml, P = 0.845; Fig. 1A). Similarly, no significant difference between groups was observed in serum TSH level at 60 min (−258A/A 10.43 ± 4.99 vs -258G/x 9.91 ± 3.94 mIU/ml, P = 0.863), 120 min (−258A/A 4.80 ± 2.46 vs -258G/x 4.81 ± 2.07 mIU/ml, P = 0.845), and 180 min (−258A/A 2.10 ± 1.57 vs -258G/x 2.22 ± 1.22 mIU/ml, P = 0.364). When the analysis was performed among -258G/x genotype, the -258G/x 92Thr/Thr showed, compared with the other haplotypes, lower TSH values at 30 min (8.90 ± 3.39 vs 14.45 ± 6.31 mIU/ml, P < 0.05), 60 min (6.44 ± 2.29 vs 10.68 ± 4.54 mIU/ml, P = 0.03), and nonsignificant trend at 120 min (3.24 ± 1.27 vs 5.00 ± 2.31 mIU/ml, P = 0.07; Fig. 1B).

A rise in serum TT3 level was noted in all participants undergoing TRH testing starting at 30 min after TRH injection (Fig. 2). No differences between groups were observed in TT3 at 60 min (−258A/A 19.35 ± 12.89 vs -258G/x 14.44 ± 12.44 ng/dl, P = 0.206), 120 min (−258A/A 46.58 ± 20.91 vs -258G/x 44.91 ± 15.29 ng/dl, P = 0.769), and at 180 min (−258A/A 49.51 ± 13.61 vs -258G/x 52.54 ± 15.54 ng/dl,

Table 1 Study participants’ characteristics. Clinical data of the study participants were reported according to either the -258A status (columns 1 and 2) or the -258G/x 92G/A 92Ala/x haplotype (columns 3–6). No significant differences were observed among the groups.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>−258A</th>
<th>−258G/x</th>
<th>92Thr/Thr</th>
<th>−258A</th>
<th>−258G/x</th>
<th>92Thr/Thr</th>
<th>−258A</th>
<th>−258G/x</th>
<th>92Thr/Thr</th>
<th>−258A</th>
<th>−258G/x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (M/F)</td>
<td>16/10</td>
<td>19/11</td>
<td>10/6</td>
<td>10/6</td>
<td>2/3</td>
<td>9/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>32.8 ± 10.0</td>
<td>31.1 ± 10.9</td>
<td>31.8 ± 7.5</td>
<td>33.5 ± 11.5</td>
<td>34.0 ± 14.9</td>
<td>33.1 ± 9.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>25.9 ± 4.7</td>
<td>24.9 ± 4.0</td>
<td>25.4 ± 3.7</td>
<td>26.2 ± 5.3</td>
<td>26.7 ± 4.5</td>
<td>24.2 ± 3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline TSH (mIU/ml)</td>
<td>1.4 ± 0.9</td>
<td>1.5 ± 0.6</td>
<td>1.2 ± 0.6</td>
<td>1.6 ± 1.1</td>
<td>1.2 ± 0.5</td>
<td>1.6 ± 0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline T₃ (ng/dl)</td>
<td>107.4 ± 19.8</td>
<td>101.8 ± 24.0</td>
<td>111.8 ± 24.6</td>
<td>103.8 ± 17.6</td>
<td>90.6 ± 6.9</td>
<td>105.2 ± 24.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline FT₄ (ng/dl)</td>
<td>1.3 ± 0.1</td>
<td>1.3 ± 0.1</td>
<td>1.2 ± 0.1</td>
<td>1.3 ± 0.2</td>
<td>1.3 ± 0.2</td>
<td>1.3 ± 0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline T₃/FT₄ (ng/dl)</td>
<td>84.2 ± 18.7</td>
<td>80.0 ± 21.1</td>
<td>91.5 ± 21.3</td>
<td>79.9 ± 14.3</td>
<td>71.7 ± 6.7</td>
<td>83.3 ± 23.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline cholesterol (mg/dl)</td>
<td>151.0 ± 40.0</td>
<td>161.3 ± 29.7</td>
<td>144.3 ± 36.3</td>
<td>154.8 ± 42.6</td>
<td>158.2 ± 18.2</td>
<td>162.4 ± 33.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL (mg/dl)</td>
<td>86.1 ± 29.4</td>
<td>96.1 ± 25.5</td>
<td>78.6 ± 21.1</td>
<td>90.7 ± 33.3</td>
<td>94.2 ± 18.7</td>
<td>96.8 ± 28.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDL (mg/dl)</td>
<td>52.1 ± 12.8</td>
<td>49.2 ± 12.2</td>
<td>51.8 ± 17.0</td>
<td>52.2 ± 9.9</td>
<td>47.8 ± 13.8</td>
<td>49.1 ± 12.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triglycerides (mg/dl)</td>
<td>64.3 ± 38.1</td>
<td>83.7 ± 55.9</td>
<td>72.6 ± 56.9</td>
<td>59.7 ± 23.1</td>
<td>77.8 ± 27.1</td>
<td>85.8 ± 63.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose (mg/dl)</td>
<td>79.3 ± 9.9</td>
<td>82.3 ± 7.0</td>
<td>80.3 ± 7.2</td>
<td>78.6 ± 11.4</td>
<td>84.2 ± 4.7</td>
<td>81.6 ± 7.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin (mIU/ml)</td>
<td>4.1 ± 2.9</td>
<td>4.0 ± 2.9</td>
<td>3.0 ± 1.4</td>
<td>4.8 ± 3.4</td>
<td>5.8 ± 5.0</td>
<td>3.3 ± 1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOMA</td>
<td>0.8 ± 0.7</td>
<td>0.8 ± 0.6</td>
<td>0.6 ± 0.3</td>
<td>1.0 ± 0.8</td>
<td>1.2 ± 1.0</td>
<td>0.7 ± 0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
activation of this pathway by congenital or acquired conditions is associated with a shift in the ratio of serum T_3/T_4 (15) secondary to activation of intrathyroidal conversion of T_4 into T_3 by both deiodinases type 1 and type 2 (7). While deiodinase type 1 gene transcription is primarily driven by positive feedback of increased intracellular levels of T_3 (16), thyroidal transcription of the $DIO2$ gene is driven by the TSH-mediated cAMP pathway (8, 9). Hence, the latter has a primary role in regulating intrathyroidal TH conversion and the pattern of TH secretion after TSH stimulation.

Genetic variants of $DIO2$ have been associated with changes in indices of TH action at various end organs (12, 13, 17, 18, 19) and also with changes in circulating levels of TH (11, 20), but the results are controversial (21, 22). Clinical and in vitro studies suggest that the two most common polymorphisms have opposite effects on enzymatic activity. In fact, while the $Thr92Ala$ variant is associated with a decreased activity (23) and indices of reduced TH at the end organ level (13), the $–258A/G$ has been associated with increased enzymatic activity (11, 24). With respect to the effects of these polymorphisms on circulating levels of TH, the effects of $Thr92Ala$ are minimal (20), while the $–258A/G$ is associated with a change in the T_3/FT_4 ratio (11), confirming in vitro observations that the minor G allele confers an increase in transcription and ultimately activity (24). It is worth noting that the changes in TH levels observed at a steady state are small, and not all studies confirmed the original observations (22). Conversely, a secondary analysis of a large $l-T_3/l-T_4$ combination therapy trial suggests that the common $Ala92$ variant is associated with worse baseline indices of quality of life, and an improved response to $l-T_3/l-T_4$ combination therapy (19). These observations suggest that subtle changes in $DIO2$ activity may play an important role in the individual response to replacement therapy.

The injection of TRH allows the dynamic assessment of the hypothalamus–pituitary–thyroid axis and is a sensitive tool to demonstrate small differences in its pathophysiology; hence, we exploited the characteristics of this test to analyze the differences secondary to polymorphisms in the $DIO2$ gene in acute TSH secretion and in the pattern of TH secretion after TRH injection. Indeed, we previously demonstrated that the $Ala92$ allele causes a blunted secretion of T_3 following a TRH-mediated acute rise in TSH, consistent with a reduced intrathyroidal conversion of T_4 into T_3 (10).

The results of this study indicate that while the TSH and T_3 levels were similar to those observed in the ancestral $–258A/A$ alleles, carriers of the $–258G$ minor allele displayed a significantly blunted rise in FT_4. These findings suggest an increase in enzymatic activity, resulting in a change of T_3/FT_4 ratio consistent with a shift of the reaction equilibrium toward the product. This is in keeping with the initial observations of Peeters et al. (11), as well as with our in vitro data indicating

Discussion

The interaction between TSH and its receptor on the thyrocyte plays a central role in regulating the development, growth, and function of the thyroid gland. In particular, the interaction with the downstream G-protein signal pathways directly affects the secretion of TH from the gland (14). Sustained
that the $-258G$ allele causes an increase in transcription of the DIO2 gene by decreasing the binding of a repressor factor in the 5'-UTR of the gene (24). One can speculate that the $K_{258A/G}$ polymorphism also generates a shifted equilibrium in the thyrotroph, thus preventing an overstimulation of the thyroid gland, which would otherwise result in increased T_3 levels.

Although no differences were found between alleles in the dynamic response of TSH to TRH injection, when the analysis was performed according to the combination of the $K_{258}/$codon 92 polymorphisms, the $-258G/x$ Thr/Thr92 was associated with a significant decrease in the peak of TSH, consistent with a state of local ‘hyperthyroidism’ in the thyrotroph, in keeping with an overall increase in deiodinase activity due to the additive effects of the activating $-258G$ polymorphism and the Thr92 ‘wild-type’ allele.

The strengths of this pharmacogenomic intervention reside in the study of well-characterized healthy volunteers devoid of thyroid disease and the use of dynamic testing in a controlled environment able to amplify relatively small differences between the genotypes. On the other hand, the major limitation of the study is related to the secondary analysis of a previously collected dataset, hence the inability to perform the analysis in homozygous $-258G/G$ subjects. Conversely, it is worth noting that the outcomes tested fall within the physiological pathway explored, the results confirm the study hypothesis, and are supported by in vitro and in vivo observations (24, 25).

![Figure 2](image_url) Changes in serum T3 levels from baseline (Δ) following the i.v. injection of 500 μg TRH. Serum levels were measured at $-15, 0, 5, 10, 15, 20, 30, 60, 120,$ and 180 min after TRH injection. Error bars represent the S.E.M. at each time point. (A) Data reported according to the $-258A/G$ DIO2 genotype. No significant differences were observed between genotypes. (B) Data reported according to the $-258/codon 92$ haplotype. No significant differences were observed among haplotypes.

![Figure 3](image_url) Changes in serum free T_4 levels from baseline (Δ) following the i.v. injection of 500 μg TRH. Serum levels were measured at $-15, 0, 5, 10, 15, 20, 30, 60, 120,$ and 180 min of TRH injection. Error bars represent the S.E.M. at each time point. (A) Data reported according to the $-258A/G$ DIO2 genotype. Compared with $-258A/A$ ancestral allele, carriers of the $-258G/x$ minor allele showed a significantly blunted TRH-stimulated increase in serum free T_4 at 120 and at 180 min after TRH injection. (B) Data reported according to the $-258/codon 92$ haplotype. No significant differences were observed among haplotypes.
In conclusion, the data indicate that the \(-258A/G\) and \(Thr92Ala\) DIO2 polymorphisms affect the dynamic response of the thyroid after TRH-induced TSH stimulation, and in particular, the \(-258G\) allele causes a shift in the substrate/product ratio, consistent with an increased activation of the enzyme. Furthermore, the analysis of the haplotype suggests that the combination of the activating \(-258G\) allele, with the wild-type \(Thr92\) allele, confers a blunted TSH response to TRH stimulation, in keeping with a ‘priming’ of the thyrotroph (26) with T\(_3\) derived by an increased state of conversion of T\(_4\) into T\(_3\).

These findings are a proof of concept that common polymorphisms in the DIO2 can subtly affect the circulating levels of TH and might modulate TH homeostasis, particularly in the case of replacement therapy when the entire pool of T\(_3\) derives from the deiodinase activity (20). Further studies are needed to demonstrate the relevance of these observations in relation to clinically meaningful endpoints.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

This work was supported by the Intramural Research Program of the National Institute of Diabetes, Digestive, and Kidney Diseases, programs Z01-DK047057-01 and Z01-DK047057-02.

Acknowledgements

The authors gratefully acknowledge the help and professionalism of the nursing, laboratory, and ancillary personnel of the NIH Clinical Center. This research could have not been accomplished without the selfless participation of the study volunteers. The authors are grateful to Dr Douglas Forrest (NIDDK) for his invaluable encouragement, comments, and suggestions.

References

Received 15 December 2011
Revised version received 20 January 2012
Accepted 3 February 2012