The impact of medication on vitamin D status in older individuals

E Sohl, N M van Schoor, R T de Jongh1, O J de Vries2 and P Lips1

Department of Epidemiology and Biostatistics, EMGO Institute for Health and Care Research, VU University Medical Center. Van der Boechorststraat 7, Room A517, 1081 BT Amsterdam, The Netherlands. Departments of 1Endocrinology and 2Internal Medicine, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam, The Netherlands

(Correspondence should be addressed to N M van Schoor; Email: nm.vanschoor@vumc.nl)

Abstract

Objective: Vitamin D deficiency and polypharmacy are common in the elderly. However, knowledge on the associations between the use of specific medicines and serum 25-hydroxyvitamin D (25(OH)D) is limited. The aim of this study was to (better) define the associations between the use of specific medicines and serum 25(OH)D.

Methods: Two different cohorts (1995/1996 and 2002/2003) from the Longitudinal Aging Study Amsterdam (LASA) were used for cross-sectional analyses. LASA is based on an age and sex-stratified random sample of the Dutch older population. Study participants were aged 65–88 years in the first cohort (n=1301) and 55–65 years in the second cohort (n=736). Serum 25(OH)D of users of several groups of medicines were compared with levels of non-users using multiple linear regression analysis.

Results: Of all participants, 75.4% (first cohort) and 61.1% (second cohort) were using at least one medicine. In both cohorts, the number of medicines was associated with lower serum 25(OH)D. In the first cohort, after adjustment for confounding, users of any kind of medicine, loop diuretics and inhaled corticosteroids (only men) had respectively 4.4 nmol/l (P<0.01), 4.7 nmol/l (P=0.04) and 7.3 nmol/l (P=0.02) lower serum 25(OH)D than non-users. In the second cohort, the use of oral antidiabetics, calcium-channel blockers and angiotensin-converting enzyme inhibitors was associated with respectively 7.4 nmol/l (P=0.04), 7.7 nmol/l (P<0.01) and 7.6 nmol/l (P<0.01) lower serum 25(OH)D.

Conclusions: These data show that users of several medicines have lower serum 25(OH)D than non-users. Vitamin D supplementation may be considered in patients with chronic use of medicines.

European Journal of Endocrinology

Introduction

Vitamin D deficiency is common in older individuals. Depending on country and used definition, the prevalence of vitamin D deficiency in the older Western population ranges from 0 up to 90% (1). Low serum 25-hydroxyvitamin D (25(OH)D) in the elderly is caused by a less efficient vitamin D production in the skin, low sunshine exposure and low dietary intake (1, 2).

Older individuals often suffer from chronic diseases (3), prompting the frequent use of medication. Previous research, performed in the United States, demonstrated that 23% of women and 19% of men took five or more prescription medicines. In addition, rates of use were increasing with advancing age (4). In the Netherlands, individuals of 75 years and older use five times as much medication as the average Dutch person (5).

As stated above, low serum 25(OH)D as well as polypharmacy is common in older individuals. To our knowledge, information about the influence of medicines on serum 25(OH)D is limited. For example, some statins (6, 7, 8) are found to elevate serum 25(OH)D, whereas anti-epileptic drugs lower serum 25(OH)D (9, 10). Further knowledge about associations is warranted, because of the large influence of vitamin D in several physiological processes (1) and the possibility to prescribe vitamin D supplements in case of a lowering effect.

The aim of this study was to determine whether frequently used medicines are associated with serum 25(OH)D in older individuals. The analyses were performed with data derived from the Longitudinal Aging Study Amsterdam (LASA), an ongoing cohort study of Dutch older individuals.

Subjects and methods

Study participants

Data for this study were collected in the ongoing LASA. LASA is a prospective Dutch cohort study of older individuals, aged 55–85 years at the start in 1992.
The sampling and data collection procedures and non-response data are described elsewhere in detail (11, 12). Briefly, a random sample of men and women, stratified by age, sex and expected five-year mortality rate, was drawn from population registers from eleven municipalities (in three geographical regions) in the Netherlands. At baseline 3107 subjects aged 55–85 years were enrolled, and in 2002 an additional cohort was recruited which consisted of 1002 subjects aged 55–65 years. The study was approved by the Medical Ethics Committee of the VU University Medical Center and all participants gave informed consent.

For the present study, data from the second measurement cycle of the first cohort (1995/1996) and from the first measurement cycle of the second cohort (2002/2003) were used. In the first cohort, persons who participated in the medical interview in 1995/1996, born in or before 1930 (aged 65 years and older as of January 1, 1996), were selected (n = 1509). In 1352 of these persons, blood samples were drawn and serum 25(OH)D could be determined in 1320 samples. After exclusion due to missing values for potential confounders (n = 19), the study sample consisted of 1301 subjects.

In the second cohort, 919 subjects completed the medical interview. Blood samples were drawn from 747 persons and serum 25(OH)D could be determined in 739 persons. After exclusion due to missing values for potential confounders or medication use (n = 3), the study sample consisted of 736 subjects.

Serum 25(OH)D

Morning blood samples were obtained in 1995/1996 and in 2002/2003. Subjects were only allowed to take tea and toast, but no dairy products. The samples were centrifuged and stored at −20 °C until determination. For the samples from 1995/1996 serum 25(OH)D was measured in 1997/1998, and for the samples from 2002/2003 measurement took place in 2009. For both analyses, a competitive protein binding assay was used (1997/1998: Nichols Diagnostics, San Juan Capistrano, CA, USA; 2009: Diasorin, Stillwater, MN, USA). The inter-assay coefficients of variation values were 10% for both methods. The Nichols and Diasorin assays were compared by measuring 117 samples (41 LASA participants, and 76 patient samples, measured for clinical purposes) with both methods (range from <5 to 123 nmol/l). This cross-calibration showed that levels of 25, 50 and 75 nmol/l measured with the Nichols device equaled 26.0, 48.2 and 70.4 nmol/l respectively when measured with the Diasorin device. The correlation coefficient was r = 0.94. For this study, original non-calibrated values were used.

All analyses were performed in the Endocrine Laboratory of the VU University Medical Center.

Medication use

Medication use was assessed during the medical interview. Participants were asked to show their medication containers to the interviewers. The medication names were recoded into ATC codes using the ATC index from the World Health Organization. These ATC codes were used to create groups of users of specific groups of medicines (13).

Potential effect modifier

Gender was examined as a potential effect modifier. This was done because gender is known to be important in pharmacokinetics and pharmacodynamics due to differences in, for example, hepatic and renal processes (14).

Potential confounders

The following potential confounders were included in the statistical analyses: age, gender, number of chronic diseases, body mass index (BMI), smoking, alcohol use, education level, season of blood collection, albumin, estimate of renal function (modification of diet in renal diseases (MDRD)) and physical activity.

The number of chronic diseases was obtained by self-report, using questions on seven major diseases: chronic obstructive pulmonary disease, cardiac disease, peripheral arterial disease, diabetes mellitus, stroke, cancer and rheumatoid arthritis/osteoarthritis. BMI was calculated as body weight in kilograms divided by height in square meters and subsequently it was categorised into three groups: underweight (BMI < 20 kg/m²), normal weight (BMI ≥ 20 kg/m²) and overweight (BMI ≥ 25 kg/m²). Body weight was measured without clothes and shoes using a calibrated balance scale. Body height was measured using a stadiometer. Smoking (never, former and current smoker) and alcohol consumption (non, light, moderate and (very) excessive drinker) were based on self-report. Classification of alcohol use was based on the number of days per week alcohol was consumed and the number of drinks per time (15).

Education level was converted into years of education, and subsequently it was dichotomised into two categories: low level (≤ 9 years) and high level (> 9 years). Serum albumin was measured using a photometric assay in three different laboratories (one in each region). MDRD was calculated from serum creatinine (measured using Hitachi 747 analyzer), using the following formula: 186(creatinine (umol/l)/88.4)\(^{-1.134}\) × age (years)\(^{-0.203}\)×(0.742 if woman) (16). Season of blood collection was dichotomised into summer (April–September) and winter (October–March). Physical activity was assessed using the LASA Physical Activity Questionnaire, a validated interviewer-administered questionnaire about the duration and frequency of activities during the past 2 weeks (17).
Statistical analysis

Analyses were performed if the user group consisted of ≥5% of the study sample. Multiple linear regression analysis was used to examine differences in serum 25(OH)D between medication users and non-users. Assumptions of linear regression analysis were tested by normal probability plots and histograms. To test for interaction with gender, P value < 0.1 was considered as statistically significant. When considered significant, further analyses were performed in subgroups. To check for confounding, all potential confounders were added one by one to the univariable model. Parameters which gave a change in regression coefficient (unstandardised beta (B)) of more than 10% were added to the model. After this procedure, we created three models with the most relevant confounders. The first model adjusted for age and gender. The second model additionally adjusted for BMI, MDRD, albumin, smoking, alcohol use and season of blood collection. For all models P < 0.05 was considered as significant. To further demonstrate differences in age, an additional analysis was performed in subgroups in the first cohort (divided by the median age, 75 years). Because we did not have data on vitamin D supplementation, sensitivity analyses were performed using the fully adjusted models, in which we added multi-vitamin use as an additional confounder in the first cohort. In the second cohort, data on multi-vitamin use were not available. Physical activity was added separately to the third model to determine whether it was a mediator or a confounder. All analyses were performed using SPSS version 15.0 for Windows (SPSS Inc., Chicago, IL, USA).

Results

In the first cohort (1995/1996) a total of 1301 participants (634 men, 667 women) and in the second cohort (2002/2003) 737 participants (338 men, 399 women) were included in the analyses. Table 1 shows the characteristics of the study population. Owing to inclusion criteria with regard to age (65+ in first cohort; 55–65 years in second cohort) participants of the first cohort were much older than the participants of the second cohort (mean age 75.5 (s.d. 6.6) vs 60.0 (S.D. 2.9) years). The mean serum 25(OH)D was 53.4 (s.d. 24.1) nmol/l in the first cohort and 56.7 (s.d. 20.7) nmol/l in the second cohort. In the two cohorts, 11.1% (first cohort) and 3.4% (second cohort) of the participants had serum 25(OH)D below 25 nmol/l; and 48.3% (first cohort) and 40.5% (second cohort) had serum 25(OH)D below 50 nmol/l. Serum 25(OH)D values cannot be compared directly because different assays were used. Of all participants, 25.1% (first cohort) and 15.4% (second cohort) used four or more medicines.

Table 2 shows unadjusted mean values of serum 25(OH)D for users and non-users of several medication groups. Not all medication groups were analysed in both groups because we only performed an analysis when the user group consisted of ≥5% of the study population and because medication use differed between the two cohorts due to differences in date of measurement and in age of the participants. In general, the use of medicines was associated with lower serum 25(OH)D in comparison with non-use. Comparing the two cohorts, a higher use in proton pump inhibitors and statins and a lower use in digoxin, nitrates, coumarin derivatives, diuretics, benzodiazepines and H2-blockers were demonstrated in the second cohort compared with the first cohort.

Table 3 presents the results of linear regression analyses of the association between the use of several types of medication and serum 25(OH)D for the first cohort. A significant interaction with gender was found for coumarin derivatives, paracetamol and inhaled corticosteroids. Using any medicine was associated with a lower serum 25(OH)D in the fully adjusted analyses.
model. In the analyses stratified for age, we only found a significant association in the oldest group (75 years and older; data not shown). For coumarin derivatives, only in women was a significant association (models 1 and 2) with serum 25(OH)D observed, while in model 3 the association became borderline significant. In the first and third models, loop diuretics were significantly associated with lower serum 25(OH)D. Only in men was the use of inhaled corticosteroids and paracetamol (in models 1 and 2) associated with lower serum 25(OH)D.

Table 4 presents the results of linear regression analyses of the association between the use of several types of medication and serum 25(OH)D for the second cohort. A significant interaction for gender was found for the use of any kind of medicine and non-steroidal anti-inflammatory drugs (NSAID). A significant association between the use of any medicine and lower serum 25(OH)D was found, but only for women in the first model. In the second model the association became borderline significant. A borderline significant association between the use of proton pump inhibitors and lower serum 25(OH)D was observed in the fully adjusted model. The associations between oral antidiabetics, calcium-channel blockers and angiotensin-converting enzyme (ACE) inhibitors and lower serum 25(OH)D were significant in the fully adjusted model. We did not observe any significant relationship between statin use and serum 25(OH)D.

Figure 1 presents the relation between the number of medicines and serum 25(OH)D. In both cohorts the number of medicines was negatively associated with serum 25(OH)D (first cohort: $B = -0.7$, $P < 0.01$; second cohort: $B = -1.1$, $P < 0.01$), after adjustment for confounding.

The addition of multi-vitamin use to the models did not materially change the results. After the addition...
Inhaled corticosteroids
NSAIDs
Beta-blocking agents
H2-blockers
Paracetamol
Loop diuretics
Coumarin derivatives
Benzodiazepines
Thiazide diuretics
Platelet aggregation blockers
ACE inhibitors
Digoxin
Any kind
Calcium-channel blockers
Model 1a
Model 2b
Model 3c

<table>
<thead>
<tr>
<th>Medication</th>
<th>β (95% CI)</th>
<th>P value</th>
<th>β (95% CI)</th>
<th>P value</th>
<th>β (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any kind</td>
<td>−4.4 (−7.2; −1.5)</td>
<td><0.01</td>
<td>−3.5 (−6.5; −0.5)</td>
<td>0.02</td>
<td>−4.2 (−7.0; −1.3)</td>
<td><0.01</td>
</tr>
<tr>
<td>Coumarin derivatives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>−0.3 (−6.7; 6.0)</td>
<td>0.92</td>
<td>1.5 (−5.1; 8.3)</td>
<td>0.65</td>
<td>1.6 (−4.8; 8.1)</td>
<td>0.62</td>
</tr>
<tr>
<td>Women</td>
<td>−12.2 (−21.0; −3.4)</td>
<td><0.01</td>
<td>−10.5 (−19.5; −1.4)</td>
<td>0.02</td>
<td>−8.6 (−17.3; 0.1)</td>
<td>0.05</td>
</tr>
<tr>
<td>H2-blockers</td>
<td>−0.6 (−6.1; 5.0)</td>
<td>0.83</td>
<td>0.0 (−5.5; 5.6)</td>
<td>0.99</td>
<td>0.3 (−5.0; 5.6)</td>
<td>0.90</td>
</tr>
<tr>
<td>Digoxin</td>
<td>−0.1 (−5.1; 4.8)</td>
<td>0.96</td>
<td>1.3 (−3.8; 6.3)</td>
<td>0.62</td>
<td>0.5 (−4.3; 5.3)</td>
<td>0.84</td>
</tr>
<tr>
<td>Nitrates</td>
<td>1.0 (−5.3; 3.3)</td>
<td>0.66</td>
<td>0.4 (−3.9; 4.9)</td>
<td>0.84</td>
<td>0.1 (−4.1; 4.3)</td>
<td>0.96</td>
</tr>
<tr>
<td>Calcium-channel blockers</td>
<td>2.6 (−1.3; 6.6)</td>
<td>0.19</td>
<td>3.8 (−0.2; 7.8)</td>
<td>0.07</td>
<td>2.9 (−0.9; 6.8)</td>
<td>0.13</td>
</tr>
<tr>
<td>ACE inhibitors</td>
<td>−2.6 (−6.4; 1.2)</td>
<td>0.19</td>
<td>−1.7 (−5.6; 2.1)</td>
<td>0.38</td>
<td>−2.7 (−6.4; 1.0)</td>
<td>0.15</td>
</tr>
<tr>
<td>Thiazide diuretics</td>
<td>−1.1 (−4.8; 2.6)</td>
<td>0.57</td>
<td>−1.0 (−4.6; 2.7)</td>
<td>0.61</td>
<td>−0.7 (−4.2; 2.8)</td>
<td>0.67</td>
</tr>
<tr>
<td>Loop diuretics</td>
<td>−4.5 (−8.9; 0.0)</td>
<td>0.05</td>
<td>−3.5 (−8.0; 1.0)</td>
<td>0.13</td>
<td>−4.7 (−9.0; −0.3)</td>
<td>0.04</td>
</tr>
<tr>
<td>Potassium-sparing diuretics</td>
<td>−2.3 (−6.5; 1.9)</td>
<td>0.29</td>
<td>−2.0 (−6.2; 2.2)</td>
<td>0.35</td>
<td>−2.0 (−6.0; 2.0)</td>
<td>0.32</td>
</tr>
<tr>
<td>Beta-blocking agents</td>
<td>0.0 (−3.3; 3.3)</td>
<td>0.99</td>
<td>0.6 (−2.7; 3.9)</td>
<td>0.71</td>
<td>0.4 (−2.8; 3.6)</td>
<td>0.80</td>
</tr>
<tr>
<td>NSAIDsa</td>
<td>−1.0 (−3.7; 1.7)</td>
<td>0.46</td>
<td>−0.2 (−3.0; 2.5)</td>
<td>0.87</td>
<td>−0.7 (−3.3; 2.0)</td>
<td>0.62</td>
</tr>
<tr>
<td>Platelet aggregation blockers</td>
<td>−1.2 (−4.3; 2.0)</td>
<td>0.47</td>
<td>−0.3 (−3.5; 2.9)</td>
<td>0.87</td>
<td>−1.1 (−4.2; 2.9)</td>
<td>0.48</td>
</tr>
<tr>
<td>Benzodiazepines</td>
<td>−3.7 (−7.2; −0.1)</td>
<td>0.04</td>
<td>−3.0 (−6.6; 0.5)</td>
<td>0.09</td>
<td>−2.8 (−6.2; 0.6)</td>
<td>0.10</td>
</tr>
<tr>
<td>Paracetamol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>−11.7 (−22.5; −1.0)</td>
<td>0.03</td>
<td>−10.8 (−21.6; 0.0)</td>
<td>0.05</td>
<td>−7.4 (−17.4; 3.0)</td>
<td>0.16</td>
</tr>
<tr>
<td>Women</td>
<td>−2.0 (−8.1; 4.0)</td>
<td>0.51</td>
<td>−1.1 (−7.2; 5.0)</td>
<td>0.73</td>
<td>0.2 (−5.7; 6.1)</td>
<td>0.95</td>
</tr>
<tr>
<td>Inhaled corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>−6.5 (−12.8; −0.2)</td>
<td>0.05</td>
<td>−5.5 (−12.0; 1.1)</td>
<td>0.10</td>
<td>−7.3 (−13.7; −1.0)</td>
<td>0.02</td>
</tr>
<tr>
<td>Women</td>
<td>2.7 (5.8; 11.2)</td>
<td>0.53</td>
<td>4.1 (−4.4; 12.7)</td>
<td>0.34</td>
<td>4.8 (−3.4; 13.0)</td>
<td>0.25</td>
</tr>
</tbody>
</table>

aAdjusted for age and gender (if no stratification for gender).
bAdjusted for age, gender (if no stratification for gender), and number of chronic diseases.
cAdjusted for age, gender (if no stratification for gender), number of chronic diseases, BMI, MDRD, albumin, smoking, alcohol use and season of blood collection.
dNon-steroidal anti-inflammatory drugs.

Statistically significant P values are in boldface.

Discussion

In this study, we examined associations between specific medicines and serum 25(OH)D. In the first cohort, aged 65 years and older, associations with lower serum 25(OH)D were observed in individuals who used any medication, loop diuretics or inhaled corticosteroids (only in men). In the second cohort, aged 55−65 years, associations with lower serum 25(OH)D were found in individuals using oral anti-diabetics, calcium-channel blockers or ACE inhibitors. To our knowledge, these associations have not been investigated before. The addition of physical activity to the models did not change the results significantly. This indicates that physical activity is neither a relevant confounder nor a mediator in the relationship between medication use and vitamin D status. We question the possible causes of lower serum 25(OH)D in the user group, but due to study design no inference can be made about causality. However, three causes have to be considered. First, it could be the medicines themselves. Second, chronic diseases leading to medication use could contribute to lower levels (confounding by indication). And finally, a (chronic) disease might be a consequence of vitamin D deficiency.

In the first cohort, the use of any medication was associated with lower serum 25(OH)D. When analysing in subgroups (divided by the median age, 75 years), the association was only significant in the oldest group. This is in accordance with the results of the second cohort, which consisted of younger persons and in which we found no association. Also the number of medicines used was associated with lower serum 25(OH)D. To our knowledge, these associations were demonstrated for the first time. It is impossible to speculate on the cause of this relationship because of the diversity of medicines used. Medication use may be considered as a manifestation of frailty in older individuals, which Lang et al. (18) also suggest.

Our findings regarding the association of loop diuretic use and lower serum 25(OH)D are in accordance with previous research by Reijnmark et al. (19), although the significant association that they observed disappeared after adjustment for confounding. Adjustment for confounding was slightly different compared with our study. For example, no correction for chronic diseases was performed in that study, on the other hand the use of vitamin D supplements was taken into account (19). Unfortunately, over-the-counter vitamin D use was not available in our study. The sensitivity analysis which added multi-vitamin use, however, did not change our

www.eje-online.org
Table 4 Results of multiple linear regression analysis of associations between medication use and serum 25(OH)D in the second cohort (2002/2003). Data are expressed as regression coefficient (β; 95% confidence intervals).

<table>
<thead>
<tr>
<th></th>
<th>Model 1a</th>
<th></th>
<th>Model 2b</th>
<th></th>
<th>Model 3c</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β (95% CI)</td>
<td>P value</td>
<td>β (95% CI)</td>
<td>P value</td>
<td>β (95% CI)</td>
<td>P value</td>
</tr>
<tr>
<td>Any kind</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>1.2 (-3.0; 5.5)</td>
<td>0.56</td>
<td>2.9 (-1.6; 7.5)</td>
<td>0.21</td>
<td>3.0 (-1.5; 7.5)</td>
<td>0.20</td>
</tr>
<tr>
<td>Women</td>
<td>-4.4 (-8.9; 0.0)</td>
<td>0.05</td>
<td>-4.4 (-9.0; 0.3)</td>
<td>0.07</td>
<td>-3.4 (-8.1; 1.2)</td>
<td>0.14</td>
</tr>
<tr>
<td>Proton pump inhibitors</td>
<td>-5.6 (-11.3; 0.1)</td>
<td>0.06</td>
<td>-5.2 (-11.0; 0.5)</td>
<td>0.07</td>
<td>-5.4 (-11.1; 0.2)</td>
<td>0.06</td>
</tr>
<tr>
<td>Oral antidiabetics</td>
<td>-8.6 (-15.6; -1.7)</td>
<td>0.02</td>
<td>-7.7 (-14.8; -0.5)</td>
<td>0.04</td>
<td>-7.3 (-14.4; -0.3)</td>
<td>0.04</td>
</tr>
<tr>
<td>Platelet aggregation inhibitors</td>
<td>-1.7 (-6.6; 3.3)</td>
<td>0.51</td>
<td>-0.3 (-5.6; 5.0)</td>
<td>0.91</td>
<td>-0.7 (-6.0; 4.4)</td>
<td>0.77</td>
</tr>
<tr>
<td>Statins</td>
<td>-4.2 (-8.7; 0.3)</td>
<td>0.07</td>
<td>-3.4 (-8.1; 1.4)</td>
<td>0.17</td>
<td>-3.4 (-8.0; 1.3)</td>
<td>0.16</td>
</tr>
<tr>
<td>Calcium-channel blockers</td>
<td>-7.8 (-13.8; -1.9)</td>
<td>0.01</td>
<td>-7.2 (-13.2; -1.1)</td>
<td>0.02</td>
<td>-7.7 (-13.6; -1.7)</td>
<td>0.01</td>
</tr>
<tr>
<td>ACE inhibitors</td>
<td>-7.8 (-12.7; -2.8)</td>
<td><0.01</td>
<td>-7.4 (-12.4; -2.3)</td>
<td><0.01</td>
<td>-7.6 (-12.5; -2.7)</td>
<td><0.01</td>
</tr>
<tr>
<td>Thiazide diuretics</td>
<td>-3.2 (-8.5; 2.1)</td>
<td>0.23</td>
<td>-2.8 (-8.2; 2.5)</td>
<td>0.30</td>
<td>-3.6 (-9.0; 1.5)</td>
<td>0.16</td>
</tr>
<tr>
<td>Beta-blocking agents</td>
<td>-2.5 (-6.9; 1.8)</td>
<td>0.26</td>
<td>-2.1 (-6.5; 2.4)</td>
<td>0.36</td>
<td>-2.0 (-6.4; 2.4)</td>
<td>0.37</td>
</tr>
<tr>
<td>Non-steroidal anti-inflammatory drugs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>1.3 (-3.8; 6.3)</td>
<td>0.62</td>
<td>3.9 (-1.8; 9.5)</td>
<td>0.18</td>
<td>3.1 (-2.5; 8.7)</td>
<td>0.27</td>
</tr>
<tr>
<td>Women</td>
<td>-5.5 (-11.3; 0.3)</td>
<td>0.06</td>
<td>-5.3 (-11.3; 0.7)</td>
<td>0.08</td>
<td>-4.0 (-9.9; 1.9)</td>
<td>0.19</td>
</tr>
<tr>
<td>Benzodiazepines</td>
<td>-5.2 (-11.1; 0.6)</td>
<td>0.08</td>
<td>-4.7 (-10.6; 1.2)</td>
<td>0.12</td>
<td>-2.4 (-8.2; 3.4)</td>
<td>0.42</td>
</tr>
<tr>
<td>Inhaled corticosteroids</td>
<td>-1.8 (-8.6; 5.0)</td>
<td>0.61</td>
<td>-0.5 (-7.5; 6.6)</td>
<td>0.89</td>
<td>-0.5 (-7.4; 6.4)</td>
<td>0.89</td>
</tr>
</tbody>
</table>

aAdjusted for age and gender (if no stratification for gender).
bAdjusted for age, gender (if no stratification for gender) and number of chronic diseases.
cAdjusted for age, gender (if no stratification for gender), number of chronic diseases, BMI, MDRD, albumin, smoking, alcohol use, and season of blood collection.
dNon-steroidal anti-inflammatory drugs.

results. A randomised clinical trial showed an increase in serum PTH and serum 1,25(OH)2D after 7 days of loop diuretic use compared with placebo (20). Loop diuretics increase renal calcium excretion, causing secondary hyperparathyroidism. Hyperparathyroidism causes an increased hydroxylation of 25(OH)D into 1,25(OH)2D, which results in higher levels of 1,25(OH)2D (19, 20). The increased conversion might partly explain the decreased level of 25(OH)D within the user population. In addition, an increased catabolism of serum 25(OH)D stimulated by higher levels of 1,25(OH)2D could contribute to a lower serum 25(OH)D (21). In the present study we did not measure 1,25(OH)2D. In the second cohort, loop diuretic use was much lower and the association with 25(OH)D could not be studied.

Previous research found no effect of inhaled glucocorticosteroids on serum 25(OH)D (22). The findings in our second cohort are in line with this research. However, in the first cohort we did observe a significant association with lower serum 25(OH)D in men. Vitamin D deficiency is highly prevalent in chronic obstructive pulmonary disease (for which inhaled corticosteroids are mainly used), and serum levels correlate with severity of this disease (23, 24). Confounding by indication may indeed contribute to the association between inhaled corticosteroid use and lower serum 25(OH)D.

Vitamin D deficiency is associated with increased insulin resistance and decreased insulin secretion (25, 26). In our second study cohort, mean serum 25(OH)D of users of oral antidiabetics was 7.3 nmol/l lower compared with non-users. Although addition of physical activity to the personal leads to a non-significant P value, the absolute difference in 25(OH)D levels did not alter materially between users and non-users of oral antidiabetics and thus the clinical relevance will be comparable. Whether this difference is caused by the medication or by the diabetes should be the subject of further study.

Calcium-channel blocker use resulted in 7.7 nmol/l lower serum 25(OH)D compared with non-use. The mechanism at work might be found in the metabolism of vitamin D. Precursors of 25(OH)D are formed in the skin under the influence of u.v. light and some nutrients also contain these precursors (1, 26). These precursors are hydroxylated in the liver into 25(OH)D by CYP27A1, CYP2R1, CYP3A4 and CYPJ3. As calcium-channel blockers act as an inhibitor of CYP3A4, the formation of 25(OH)D may decrease, resulting in lower serum 25(OH)D (26, 27, 28).

ACE inhibitor use resulted in 7.6 nmol/l lower serum 25(OH)D compared with non-use. Indications for ACE inhibitor use are heart failure and hypertension in patients with metabolic syndrome and diabetes (29, 30). Hypertension may be associated with lower serum 25(OH)D (31). However, in LASA no associations between blood pressure and hypertension and serum 25(OH)D were found (32). Some other epidemiological studies showed associations between low serum 25(OH)D and several cardiovascular outcomes, but evidence for a causal relationship is lacking. The results of a systematic review and meta-analysis were equivocal (33). However, mechanistic explanations are available (34). Studies with vitamin D receptor null mice concluded that absence of effect of 1,25(OH)2D inhibition of the development of hypertension. Serum 1,25(OH)2D inhibits the production of renin, which is...
involved in the regulation of electrolyte, volume and blood pressure homeostasis (34). Despite these mechanistic explanations, a causal relationship between vitamin D status and hypertension has not been confirmed in clinical trials so far (33). Whether the observed difference in serum 25(OH)D was caused by the medication or by hypertension and cardiovascular disease or by coincidence should be the subject of further research.

Proton pump inhibitor use was associated with 5.4 nmol/l lower serum 25(OH)D, although it should be considered as borderline significant. The first cohort only contained few users and thus, analyses could not be performed. Proton pump inhibitors are associated with increased risk of osteoporotic fractures (35). However, information about the relationship with serum 25(OH)D is limited. Recently published research showed no change in serum 25(OH)D after omeprazol therapy, but this study sample consisted of healthy young people and they used omeprazole for only 30 days (36).

Definite conclusions regarding potential relationships between the use of coumarin derivatives and paracetamol and serum 25(OH)D cannot be made on the basis of our study because only a very small part of the study population used these drugs.

Previous studies reported different results about the association between statin use and serum 25(OH)D. Rosuvastatin (6, 8) and atorvastatin (7) were found to increase serum levels, whereas fluvastatin and simvastatin did not change these levels significantly (6, 37). We observed no significant association between statin use and serum 25(OH)D. In the first cohort we performed the same analysis, despite the user group being less than 5% of the population. We too did not observe an association (data not shown). Most of our participants used simvastatin (93% in first cohort and 51% in second cohort). Thus, a change in serum 25(OH)D was not expected.

Differences in used medicines are mainly due to different time points between the two cohorts (1995/1996 vs 2002/2003) and due to age differences (mean age 75 years vs 60 years). Prescription of medicines changed a little in the period between the cohorts. Age differences may contribute to differences in effects of several medicines. It is likely that older persons will react differently to medication.

The main limitation of this study is that we could not exclude confounding by indication. Pragmatically, we adjusted for the number of chronic diseases. Furthermore, it was not possible to consider vitamin D intake because information about over-the-counter vitamin D use or diet was not assessed. A sensitivity analysis however, in which multi-vitamin use was added to the models, showed no differences in observed associations. We also realise that we could not investigate the association for one specific medicine separately because most participants did not use only one kind of medicine. The LASA population is a representative sample of the Dutch older population and this also pertains to the use of medicines. Lastly, although we tested many medication groups, we do not think that the results represent a type 1 error because the significant P values were low. The strengths of our study include the population-based design, the large study population with a wide age range and accuracy in reporting medication use.

Our study results show interesting associations between several types of medicines and serum 25(OH)D. Nevertheless, further studies are necessary to confirm our findings and to explore potential underlying mechanisms. Additionally, an increasing number of medicines are associated with lower serum 25(OH)D levels. This suggests that vitamin D supplementation should be considered in patients with chronic use of more than one medication.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.
Funding

This study is based on data from The Longitudinal Aging Study Amsterdam, which is largely supported by a grant from the Netherlands Ministry of Health, Welfare and Sports, Directorate of Long-Term Care. In addition, this study was partly funded by ZonMw. The serum 25(OH)D measurements of the second cohort were funded by Merck & Co.

References

13 WHO collaborating Centre for drug Statistics Methodology – Website (cited 2011, April 27). Available from URL: http://www.whooc.no/atc_ddi_index.de/

31 Snijder MB, Lips R, Seidell JC, Visser M, Deeg DJH, Dekker JM & van Dam RM. Vitamin D status and parathyroid hormone levels

Received 25 October 2011
Revised version received 5 December 2011
Accepted 14 December 2011