The influence of body mass index and renin–angiotensin–aldosterone system activity on the relationship between 25-hydroxyvitamin D and adiponectin in Caucasian men

Anand Vaidya1,2, John P Forman2,3, Patricia C Underwood1,2,4, Paul N Hopkins5, Gordon H Williams1,2, Luminita H Pojoga1,2 and Jonathan S Williams1,2

1Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, 221 Longwood Avenue, RFB 386, Boston, Massachusetts 02115, USA, 2Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA, 3Renal Division and Channing Laboratory, Boston, Massachusetts, USA, 4School of Nursing, Boston College, Boston, Massachusetts, USA and 5Cardiovascular Genetics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA

(Correspondence should be addressed to A Vaidya at Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital; Email: avaidya1@partners.org)

Abstract

Objective: Previous studies have suggested that circulating adiponectin concentrations are associated positively with vitamin D and negatively with body mass index (BMI) but have not accounted for the influence of the renin–angiotensin–aldosterone system (RAAS) in this relationship. This is particularly relevant because increased RAAS activity is associated with obesity and is known to lower adiponectin levels. We evaluated the association between adiponectin and 25-hydroxyvitamin D (25(OH)D) after controlling RAAS activity with dietary sodium equilibration and also evaluated whether this relationship was influenced by BMI.

Design: Cross-sectional study of 115 hypertensive Caucasian men from the Hypertensive Pathotype Consortium.

Methods: To manipulate RAAS activity, all subjects underwent 1 week of high dietary sodium (HS) diet to suppress RAAS and 1 week of low dietary sodium (LS) diet to stimulate RAAS. Linear regression was used to evaluate the association between adiponectin and 25(OH)D, and the effect of BMI on this relationship, in each dietary condition.

Results: Adiponectin was higher on HS, where circulating RAAS activity was low, when compared with LS (HS = 2.9 versus LS = 2.4 μg/ml, P < 0.0001). 25(OH)D levels were positively associated with adiponectin, and BMI was a statistically significant effect modifier of the relationship between 25(OH)D and adiponectin on both diets (P interaction < 0.01 between BMI and 25(OH)D).

Conclusions: Higher 25(OH)D concentrations were independently associated with higher adiponectin levels, particularly when BMI was high. Dietary sodium balance and circulating RAAS activity did not appear to affect this relationship. Future studies should explore whether vitamin D supplementation increases adiponectin levels in obesity.

European Journal of Endocrinology 164 995–1002

Introduction

Adiponectin is a peptide hormone secreted almost exclusively by adipose tissue, yet paradoxically obesity is a state of hypoadiponectinemia (1, 2). Because higher adiponectin concentrations are associated with improved cardiovascular profiles, identifying etiologies for adiponectin deficiency and methods to raise circulating adiponectin in obesity may have clinical importance (1, 3–6).

In addition to adiponectin deficiency, obesity has consistently been shown to be a condition of relative vitamin D deficiency (7, 8) and excess tissue renin–angiotensin–aldosterone system (RAAS) activity (9–13); adipocytes produce all of the components of the RAAS, generating a local adipose tissue RAAS that is distinctly regulated from the circulating RAAS (12–18). This may be relevant since increased RAAS activity lowers adiponectin, while inhibiting the RAAS increases it (19–24); whether increased adipose tissue RAAS activity in obesity contributes to adiponectin deficiency is not known. Prior cross-sectional studies suggested a positive association between 25-hydroxyvitamin D (25(OH)D) and adiponectin; however, they were not designed to study the role of the RAAS in this relationship (25–27). As age, gender, race, body mass index (BMI), hypertension status, dietary sodium balance, and RAAS activity are all known to affect adiponectin measurements (1, 22, 23, 28–31), the independent association of vitamin D and...
adiponectin is best evaluated after controlling or adjusting for these elements. Vitamin D is an inhibitor of renin expression in animals (32–34), and accruing evidence in humans has associated vitamin D deficiency with augmented RAAS activity, particularly in obesity (11, 35–38). Recent evidence suggests that the association between metabolic disturbances and both 25(OH)D and adiponectin strengthens with obesity, where adipose tissue RAAS activity is high (7, 12, 39). Thus, one explanation for these previously observed findings (25–27) is that higher vitamin D levels increase adiponectin levels by lowering adipose tissue RAAS activity.

We evaluated whether 25(OH)D concentrations were positively associated with circulating adiponectin, using a study design that meticulously controlled and adjusted for age, gender, race, hypertension status, and circulating RAAS activity in a Clinical Research Center (CRC). As increased adiposity is a known modifier of relationships involving vitamin D and adiponectin (7, 39), we also evaluated whether BMI was an effect modifier of the relationship between 25(OH)D and circulating adiponectin. We hypothesized that if BMI modified the relationship between 25(OH)D and adiponectin, this could indirectly implicate the adipose tissue RAAS as a potential mediator for this association, because its activity burden increases with higher adiposity states (13, 40).

Methods and procedures

Study population

This cross-sectional analysis was performed on the data gathered from subjects studied in the International Hypertensive Pathotype (HyperPATH) Consortium. The HyperPATH study is an ongoing, multi-site study aimed at investigating the pathophysiologic and genotypic mechanisms involved in hypertension and cardiovascular diseases. The participants were studied under one common protocol (see below) at four collaborating centers: Brigham and Women’s Hospital (Boston, MA, USA), University of Utah Medical Center (Salt Lake City, UT, USA), Vanderbilt University Hospital (Nashville, TN, USA), and Hôpital European Georges Pompidou (Paris, France). All samples obtained were sent to a central laboratory for analysis (Brigham and Women’s Hospital).

Subjects with chronic kidney disease, coronary heart disease, heart failure, suggested or known causes of secondary hypertension, and active malignancy were not enrolled in the original HyperPATH study. The enrolled subjects were classified as having hypertension if they had an untreated seated diastolic blood pressure (DBP) >100 mmHg, a DBP >90 mmHg with one or more antihypertensive medications, measured as the average of three readings with standard manual sphygmomanometer, or the use of two or more antihypertensive medications. Study procedures included dietary sodium modulation to maintain high dietary sodium (HS) and low dietary sodium balance (LS) in sequence.

Following the original study, 25(OH)D measurements were performed on all available frozen plasma of subjects with hypertension (n = 345). As gender, race, and hypertension status may all influence adiponectin concentrations (28–31) and RAAS physiology (41–43), we restricted the current cross-sectional analysis to Caucasian men with 25(OH)D measurements classified as having hypertension and successfully maintained in sodium balance per study protocols (below) and used their available frozen plasma to measure total adiponectin concentrations to comprise the final study population (n = 115).

The HyperPATH study protocol

The HyperPATH study design uses a rigorous study protocol, conducted in CRCs, designed to minimize modifiable confounders of the circulating RAAS (dietary sodium intake, body posture, diurnal variation, and medications). Measurement of the adipose tissue RAAS was not undertaken in the HyperPATH study; however, the adipose tissue RAAS has been shown to function autonomously from the circulating RAAS and is not regulated by the traditional feedback from volume and sodium balance (44). To avoid interference with circulating RAAS assessment, participants taking angiotensin converting enzyme inhibitors, angiotensin receptor blockers, or mineralocorticoid receptor antagonists, were withdrawn from these medications 3 months before study initiation. β-Blockers were withdrawn 1 month before study initiation. If needed for blood pressure control, subjects were treated with amlodipine and/or hydrochlorothiazide; however, these medications were stopped 3 weeks prior to laboratory evaluation.

Subjects were sequentially maintained in LS (≤10 mmol/24 h) and then in HS (≥200 mmol/24 h) for 5–7 days each, using diets provided by the CRC metabolic kitchen. Both study diets also included fixed quantities of potassium (80 mmol/day) and calcium (1000 mg/day). Study diets were not controlled for macronutrient or calorie intake. After completion of each diet phase, participants were admitted to the institutional CRC and maintained in a supine position overnight. External sodium balance and diet compliance were confirmed on admission to the CRC with a 24 h urine sodium excretion of ≥150 mmol for HS and ≤30 mmol for LS. For each diet phase, on the morning following admission, baseline blood sampling was obtained after overnight supine rest, collected on ice and centrifuged immediately for 20 min, and plasma separated and frozen without preservatives until assayed. Blood samples were processed at a central
laboratory (Brigham and Women’s Hospital). Baseline blood pressure was determined while supine, following 10 h of overnight rest using the average of five readings from a Dinamap automated device (Critikon, Tampa, FL, USA). Study protocols were approved by the Human Subjects Committees/Institutional Review Boards of each location, and informed written consent was obtained from each subject.

Biochemical assessments

All 115 subjects had a single plasma 25(OH)D level measured at baseline on the first day of the study (Diasorin, Inc., Stillwater, MN, USA; intra-assay variation 4.4–8.3%, inter-assay variation 6.2–12.5%). Circulating RAAS activity was assessed via plasma renin activity (PRA) (Diasorin, Inc.; intra-assay variation 4.6–10%, inter-assay variation 5.6–7.6%) using previously described methods with a lower limit of detection of 0.10 ng/ml per h (45), and serum aldosterone (Siemens, Los Angeles, CA, USA; intra-assay variation 2.5–5.4%, inter-assay variation 3.8–15.7%) measured from the morning baseline blood sampling of both HS and LS phases. Plasma total adiponectin (ALPCO Diagnostics, Inc., Salem, NH, USA; intra-assay variation 5.0–5.4%, inter-assay variation 6%), plasma glucose, and insulin were also measured from these blood samples. The homeostasis model assessment index (HOMA-IR) was calculated from plasma glucose and insulin values ((glucose)×(insulin)/405) (46) and used in multivariable analyses as a general representation of insulin resistance.

Statistical methods

Sequential analyses were performed to evaluate i) the effect of dietary sodium/RAAS modulation on circulating adiponectin, ii) the association of BMI with adiponectin on each diet, iii) the association of 25(OH)D with adiponectin on each diet, and iv) whether BMI modified the relationship between 25(OH)D and adiponectin, two multivariable interaction models were used. BMI was used as a categorical variable in the first interaction model and as a continuous variable in the second for concordance. These interaction models included age, 25(OH)D, BMI, HOMA-IR, and an interaction term between BMI and 25(OH)D. To account for a multiple testing, a Bonferroni-adjusted P value of 0.025 for significance was applied to these two interaction models. The level for significance for all other tests conducted was set at α = 0.05, with all reported P values as two tailed. Data analyses were performed using SAS statistical software, v9.1 (Cary, NC, USA).

Results

Population characteristics

The mean age of the study population was 48.4 years old (S.D. = 7.7, range 25–66). They were overweight with a mean BMI of 27.9 kg/m² (S.D. = 3.3, range 20.3–35.3) and had a mean 25(OH)D concentration of 22.6 ng/ml (S.D. = 8.8, range 7.3–58.0), consistent with vitamin D insufficiency by current clinical consensus (48). As anticipated, HS balance resulted in increased blood pressure, suppression of circulating RAAS activity, and lower HOMA-IR, than when compared with LS balance (49–51) (Table 1). Consistent with previous observations in lean normotensive men (22, 23), adiponectin concentrations in this population of overweight hypertensive men were significantly higher in HS balance where circulating RAAS activity was suppressed, when compared with LS balance where RAAS activity was high (Table 1).

<table>
<thead>
<tr>
<th>24 h urine sodium (mmol)</th>
<th>LS</th>
<th>HS</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.5 (7.6)</td>
<td>238.2 (64.4)</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>132.2 (18.1)</td>
<td>143.7 (18.8)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>79.3 (11.1)</td>
<td>88.1 (11.8)</td>
<td><0.0001</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>2.4 (1.7, 3.6)</td>
<td>2.0 (1.4, 3.1)</td>
<td>0.001</td>
</tr>
<tr>
<td>Adiponectin (µg/ml)</td>
<td>2.4 (1.8, 3.4)</td>
<td>2.9 (2.3, 4.1)</td>
<td><0.0001</td>
</tr>
<tr>
<td>PRA (ng/ml per h)</td>
<td>3.7 (1.1, 4.5)</td>
<td>0.50 (0.26, 0.90)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Aldosterone (ng/dl)</td>
<td>16.7 (12.2, 24.8)</td>
<td>4.1 (2.7, 7.0)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

LS, low dietary sodium; HS, high dietary sodium.
concentrations expectedly declined with increasing categories of BMI (7.8) (27.4±11.8, 22.4±7.6, and 20.4±7.7 ng/ml for lean, overweight, and obese individuals respectively; P=0.01).

Adiponectin and BMI

The continuous association between BMI and adiponectin, which is known to be an inverse relationship (3), was analyzed on each study diet to evaluate the influence of the circulating RAAS on this relationship. In LS balance where circulating RAAS activity was high, higher BMI was associated with lower circulating adiponectin (univariate $\beta = -0.034$ (-0.05, -0.01), $P<0.01$), even after multivariable adjustments (adjusted $\beta = -0.025$ (-0.048, -0.001), $P=0.03$). Similarly, in HS balance where RAAS activity was suppressed, this relationship paralleled the inverse relationship seen in LS, but as expected, with higher adiponectin concentrations for all values of BMI both before (univariate $\beta = -0.038$ (-0.06, -0.02), $P<0.001$) and after multivariable adjustments (adjusted $\beta = -0.027$ (-0.050, -0.004), $P=0.02$; Fig. 1).

As circulating RAAS activity was inversely associated with adiponectin (Table 1), but the relationship between BMI and adiponectin appeared to be independent of circulating RAAS activity or dietary sodium balance, we examined components of circulating RAAS activity as a function of BMI. In the context of our dietary conditions, BMI was not associated with either PRA or serum aldosterone (Table 2).

Adiponectin and 25(OH)D

The association between 25(OH)D and adiponectin was evaluated under each dietary condition. A positive relationship between 25(OH)D and adiponectin was observed in LS balance (univariate $\beta = 0.011$ (0.002, 0.019), $P=0.01$) that remained significant after multivariable adjustments (adjusted $\beta = 0.009$ (0.001, 0.018), $P=0.03$). Although the graphical relationship between 25(OH)D and adiponectin concentrations in HS appeared to parallel that seen in LS (Fig. 2), this trend was not statistically significant (univariate $\beta = 0.007$ (-0.001, 0.016), $P=0.08$) (Fig. 2).

BMI influences the relationship between adiponectin and 25(OH)D

The relationship between 25(OH)D and adiponectin was evaluated as a function of BMI and was observed to strengthen with increasing BMI status, with maximal magnitude and significance in the obese subgroup (Table 3). We employed adjusted interaction models to assess whether BMI was a statistically significant effect modifier of the relationship between 25(OH)D and adiponectin and observed that the positive association between 25(OH)D and adiponectin strengthened with increasing BMI categories (LS: P interaction <0.01; HS: P interaction <0.01); higher 25(OH)D concentrations were associated with higher circulating adiponectin with progression to obesity. The association between 25(OH)D and adiponectin also strengthened with increasing BMI as a continuous measure in LS (P interaction <0.01) but was marginally non-significant in HS (P interaction = 0.06).

Discussion

The relationship between vitamin D, adiponectin, the RAAS, and obesity is complex and intertwined. We evaluated whether the positive association between 25(OH)D and adiponectin was independent of circulating RAAS activity and also hypothesized that this association would strengthen with increasing BMI. The latter hypothesis could indirectly support a mechanism of vitamin D-mediated lowering of the adipose tissue RAAS resulting in higher circulating adiponectin concentrations.

We observed several notable findings in this analysis. First, we found that in Caucasian hypertensive men who were generally overweight, total adiponectin was inversely related to circulating RAAS activity when modulated by dietary sodium intake. We also observed that adiponectin was inversely associated with BMI and positively associated with 25(OH)D regardless of dietary sodium intake and circulating RAAS activity (known modulators of circulating adiponectin (22, 23)). Finally, the association between 25(OH)D and adiponectin strengthened with increasing BMI and was only significant among obese individuals, where the burden of adipose tissue RAAS activity is expected to be higher (12, 13, 40).

![Figure 1](https://www.eje-online.org)
make conclusions about the specific role adipose tissue RAAS activity plays in regulating adiponectin in obesity (13, 15, 17, 40, 52), reduction of adiponectin concentrations with increased RAAS activity (19–24), and an inverse relationship between vitamin D and RAAS activity (11, 35–38). We speculate that our findings may indirectly support the adipose tissue RAAS as an important negative paracrine regulator of adiponectin secretion in adipose tissue (21); the adipose tissue RAAS may in turn may be negatively regulated by vitamin D (10, 11, 35, 36, 38). With this hypothesized mechanism, vitamin D supplementation could raise circulating adiponectin in obesity by downregulating adipose tissue RAAS activity. As our cross-sectional study did not include direct measurements of the adipose tissue RAAS, it was not designed to make conclusions about the specific role adipose tissue RAAS may play but rather may generate novel hypotheses regarding the mechanism for our associations.

Our findings are consistent with and extend the work of others. Prior investigations have demonstrated reciprocal changes in adiponectin when modulating the circulating RAAS with dietary sodium in a population of lean and healthy normotensive men (22, 23). Similarly, we also observed a decrease in adiponectin with increased circulating RAAS activity but in a cohort of largely overweight and hypertensive men with comparatively unfavorable metabolic profiles and lower adiponectin concentrations; raising adiponectin in this population may improve cardiovascular risk (4), while hypoadiponectinemia may worsen it (5, 6).

As expected, we observed that adiponectin concentrations declined with increasing BMI (3). The strength of association between BMI and adiponectin concentrations was the same irrespective of sodium balance (LS or HS) or circulating RAAS activity, suggesting that the inverse relationship between adiponectin and adiposity may be independent of circulating RAAS activity. We observed no association between BMI and individual circulating RAAS components; in contrast, an inverse association between circulating and adipose tissue RAAS activity with adiponectin is well established (19–24). This raised the possibility that higher local RAAS activity within the adipose tissue compartment could exert important local or paracrine influences that determine the lower adiponectin concentrations with obesity. The adipose tissue RAAS is not influenced by the traditional sodium homeostasis and blood pressure feedback mechanisms (44) and has been shown to modulate adiponectin concentrations in transgenic mice (21). In these animal models, mice lacking the angiotensinogen gene exhibited higher adiponectin concentrations when compared with wild-type mice; however, in knockout mice who expressed angiotensinogen only in adipose tissue, adiponectin declined back to wild-type levels.

We postulated that understanding the relationship between vitamin D and adiponectin may provide further insight into the hypothesized role the adipose tissue RAAS plays in regulating adiponectin in obesity. Vitamin D metabolites have been shown to exhibit an inverse relationship with renin as well as local tissue RAAS activity, implicating vitamin D as an endogenous antagonist of the RAAS by inhibiting renin expression (10, 11, 33, 35–38, 53). Furthermore, vitamin D status is intertwined with the obesity epidemic in that higher adiposity is associated with vitamin D deficiency (8). Assimilating these prior observations, we hypothesized that 25(OH)D deficiency could explain the augmented adipose tissue RAAS activity and resultant changes in adiponectin concentrations in obesity. Since activity of the adipose tissue RAAS increases with progressive adiposity (12), we speculated that the association between 25(OH)D and adiponectin

As obesity is a state of hypoadiponectinemia (7, 8) and relative vitamin D deficiency (1, 2), the clinical importance of our cross-sectional observations is providing data to suggest that vitamin D supplementation may raise adiponectin levels in obesity, an outcome which is associated with lower cardiovascular risk (3–6). The mechanistic implications of our outcome which is associated with lower cardiovascular risk (3–6) . The mechanistic implications of our outcomes may raise adiponectin levels in obesity , an importa
whether its role is independent of vitamin D metabolites has been associated with the RAAS (54); however, implications of our associations. Parathyroid hormone tissue RAAS are needed to confirm the mechanistic in vitro peptide system, vasopressin, etc.). Future involved (sympathetic nervous system, natriuretic sured factors that interact with RAAS activity may be (which we speculate may play a role in explaining our we had no direct measures of the adipose tissue RAAS associations between 25(OH)D, BMI, and adiponectin, adiponectin. Though our study describes notable associations; prospective vitamin D supplementation especially in obese individuals.

Table 3 The association between 25-hydroxyvitamin D (25(OH)D) and adiponectin strengthens with increasing adiposity (Lean: BMI <25 kg/m²; Overweight: BMI 25–29.9 kg/m²; Obese: BMI ≥30 kg/m²). The association between 25(OH)D and adiponectin stratified by body mass index status in LS and HS balance, reported as unadjusted effect estimates (β) and 95% confidence intervals for β with P values (P).

<table>
<thead>
<tr>
<th></th>
<th>Lean (n=20)</th>
<th>Overweight (n=59)</th>
<th>Obese (n=36)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>−0.012</td>
<td>0.011</td>
<td>0.024</td>
</tr>
<tr>
<td>95% CI</td>
<td>−0.027, 0.003</td>
<td>−0.001, 0.023</td>
<td>0.007, 0.041</td>
</tr>
<tr>
<td>P</td>
<td>0.12</td>
<td>0.07</td>
<td><0.01</td>
</tr>
<tr>
<td>HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>−0.006</td>
<td>0.002</td>
<td>0.016</td>
</tr>
<tr>
<td>95% CI</td>
<td>−0.025, 0.012</td>
<td>−0.011, 0.016</td>
<td>0.0001, 0.032</td>
</tr>
<tr>
<td>P</td>
<td>0.50</td>
<td>0.73</td>
<td>0.04</td>
</tr>
</tbody>
</table>

would strengthen with increasing BMI. With higher BMI, we observed that the strength of the positive association between 25(OH)D and adiponectin increased and became significant; BMI was a statistically significant effect modifier of this relationship. Specifically, we observed that 25(OH)D and adiponectin were significantly associated in the obese subgroup; however, it remains to be determined whether this relationship is dependent on obesity per se, the volumes of subcutaneous versus visceral adiposity, or other contributory factors. This observation is consistent with recent reports that have implicated adiposity as an important modulator of associations concerning 25(OH)D and adiponectin (7, 39). Because obese individuals tend to have lower 25(OH)D levels and higher cardiovascular co-morbidities, this finding may bear significant clinical value: the supplementation of vitamin D, which is implicated as a negative biologic regulator of the RAAS (10), may lower adipose tissue RAAS activity and improve adiponectin concentrations, especially in obese individuals.

Our results must be interpreted within the context of our study design. This analysis was cross-sectional and thus cannot prove causality or directionality of associations; prospective vitamin D supplementation studies are required to evaluate the effect on circulating adiponectin. Though our study describes notable associations between 25(OH)D, BMI, and adiponectin, we had no direct measures of the adipose tissue RAAS (which we speculate may play a role in explaining our findings) and acknowledge that several other unmeasured factors that interact with RAAS activity may be involved (sympathetic nervous system, natriuretic peptide system, vasopressin, etc.). Future in vivo or in vitro studies with direct measurements of the adipose tissue RAAS are needed to confirm the mechanistic implications of our associations. Parathyroid hormone has been associated with the RAAS (54); however, whether its role is independent of vitamin D metabolites remains unresolved. Our study design controlled for dietary sodium and calcium intake, but we did not have parathyroid hormone, ionized calcium, or 1,25(OH)D measurements and thus cannot comment on whether our observed associations were independent of these factors. Though the time of the year and seasonality are known to influence 25(OH)D levels (48), our analysis was focused on evaluating the physiologic effect of 25(OH)D concentrations on adiponectin at the time of study; therefore, we did not adjust for these factors. This analysis consisted of only 115 individuals and thus may not have been adequately powered to detect some trends that fell short of statistical significance; however, our observations are consistently linked to those that have previously described adipose tissue RAAS physiology and regulation (9, 13, 52) and the relationship between vitamin D and the RAAS (35–38). We studied a population of male Caucasians with hypertension; thus, the generalizability of our results to other races, female gender, and blood pressure status is still uncertain. On the other hand, a major strength of our study was that subjects underwent a paired intervention design with meticulous control for gender, race, sodium/RAAS status, and hypertension phenotype, all of which can confound measures of the RAAS and adiponectin and result in unreliable observations (22, 23, 28, 30, 31).

Adipose tissue is an endocrine organ that produces adiponectin and a local tissue RAAS: with progression to obesity, activity of the adipose tissue RAAS increases and adiponectin concentrations decrease. Though adiponectin concentrations are known to decline with higher RAAS activity and higher BMI, we observed that the inverse association between BMI and adiponectin was independent of circulating RAAS activity. Furthermore, 25(OH)D was positively associated with adiponectin, especially in obesity, and this relationship appeared to be independent of circulating RAAS activity. As 25(OH)D deficiency is especially prevalent in obesity, future studies to evaluate the relationship between vitamin D supplementation and adiponectin, as well as the role of the adipose tissue RAAS in this relation, are warranted.

Declaration of interest
The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding
F32 HL104776-01 (A Vaidya), F31 NR011108-01 (P C Underwood), K08 HL079929 (J P Forman), KL2 RR025757 (L H Pojoga), SDG 0735609T (L H Pojoga), K23 HL08236-03 (J S Williams), and U54LM008748 from the National Library of Medicine and UL1 RR025758, Harvard Clinical and Translational Science Center, from the National Center for Research Resources and M01-RR02635, Brigham and Women’s Hospital, General Clinical Research Center, from the National Center for Research Resources, and the Specialized Center of Research (SCOR) in Molecular Genetics of Hypertension.
Acknowledgements

We would like to thank the staff of the Clinical Research Centers at our collaborating institutions, including the Brigham and Women’s Hospital, the Centre Investigation Clinique, Hôpital Européen Georges Pompidou, the University of Utah Medical Center, and Vanderbilt University Hospital.

References

16. Reudelhuber TL. Deciphering the roles of tissue renin–angiotensin systems in whole animals. Hypertension 2010 57 532–537. (doi:10.1161/HYPERTENSIONAHA.110.167114)

