Limited utility of oral glucose tolerance test in biochemically active acromegaly

Antônio Ribeiro-Oliveira Jr, Alexander T Faje and Ariel L Barkan
Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 30330-120, Brazil and 1Division of MEND, Department of Medicine and 2Department of Neurosurgery, University of Michigan, 24 Frank Lloyd Wright Drive, G-1 500, Ann Arbor, Michigan 48016, USA

(Correspondence should be addressed to A L Barkan at Division of MEND, Department of Medicine, University of Michigan; Email: abarkan@umich.edu)

Abstract
Context: Measurement of GH after oral glucose tolerance test (OGTT) is used for the diagnosis and surveillance of acromegaly. However, there are major discrepancies between glucose-suppressed GH and plasma IGF1 as indices of biochemical activity of acromegaly in patients with relatively mild GH oversecretion. This study was aimed to assess the performance of OGTT in patients with acromegaly and variable GH outputs.

Methods: Forty adults with newly diagnosed, untreated acromegaly (15 with GH > 4.3 µg/l and 25 with GH < 4.3 µg/l) and elevated IGF1 levels were studied. All underwent Q10 min for 24 h sampling for GH followed by an OGTT.

Results: Postglucose nadir GH (GHn) correlated significantly to 24 h GHn, mean 24 h GH, and baseline GH (P < 0.001 for all comparisons). GHn correlated significantly to IGF1 z-scores for the ‘low’ GH group and for the entire group (P < 0.0001 for both comparisons), but not for the ‘high’ GH group. None of the patients with mean GH > 4.3 µg/l had GHn below 1 µg/l. In contrast, 13 out of 25 patients (52%) with GH < 4.3 µg/l showed GHn lower than 1 µg/l, and 7 of them (28%) had GHn lower than 0.4 µg/l. These groups did not differ significantly either for average or for maximal GH suppression in OGTT.

Conclusions: Our data show that suppressibility of GH by glucose in acromegaly is a function of the degree of GH hypersecretion and that OGTT has only limited diagnostic value in patients with biochemically active acromegaly but only mildly increased GH output.

Introduction
Prior to the introduction of insulin-like growth factor 1 (IGF1) assay into clinical practice, measurement of plasma GH after oral glucose tolerance test (OGTT) and repeated GH sampling were the only biochemical means to diagnose active acromegaly. Using RIA procedures, the cut-off for the normal GH response to glucose was conventionally accepted as 2 µg/l (1). Subsequent development of sensitive IRMA and immunoluminometric assays (ILMA) revealed that true GH nadirs (GHn) after oral glucose in healthy controls were much lower in the range of 0.20–0.25 µg/l (2).

Incomplete GH suppression by glucose in the presence of normal IGF1 milieu was proposed to be a potentially predictive sign of future biochemical relapse (3), although other studies did not confirm this conclusion (4, 5). At the same time, it became apparent that active acromegaly with clearly elevated IGF1 concentrations may be present even in newly diagnosed, untreated patients with apparently ‘normal’ plasma GH concentrations (6). Nowadays, the GHn cut-off currently most used to define diagnosis and cure of acromegaly has been considered to be 1.0 µg/l (7), although the last consensus has suggested a lower cut-off of 0.4 µg/l (8).

This study aimed to evaluate the performance of OGTT in two different populations of clinically and biochemically active patients with acromegaly (elevated IGF1 concentrations): one with clearly elevated, and another with ostensibly ‘normal’ mean 24 h GH concentrations, in order to compare and get new insights on the differences of OGTT performance to access biochemical indices of disease. We show here a lack of reliability of OGTT to diagnose active acromegaly with only mildly elevated GH output.

Subjects and methods
Patient data samples were retrospectively collected from prior research protocols approved by the University of Michigan Institutional Review Board and General Clinical Research Center Advisory Committee. Written informed consent was obtained from all subjects prior to
Participants consumed a standard isocaloric hospital diet consisting of three meals and a bedtime snack during sample collection. Blood sampling for GH was performed at a frequency of every 10 min for 24 h in all patients. Subsequently, 100 g oral glucose was given, followed by GH and glucose measurements every 10 min for 2 h between 0700 and 0900 h while patients were resting in a supine position. We have used 100 g glucose instead of currently recommended 75 g in OGTT studies as both give identical results in terms of GH suppression (9), and many patients had already undergone the 100 g test by the time the guidelines suggesting 75 g to evaluate for both diabetes and acromegaly have been proposed.

Serum GH was measured in duplicate and always by a chemiluminescent assay (Nichols Institute Diagnostics, San Juan Capistrano, CA, USA). GH assay sensitivity reported by the manufacturer and confirmed by our experience was 0.01 µg/l. Plasma IGF1 was measured by a two-site IRMA (Diagnostic System Laboratories, Webster, TX, USA) for all samples. Age-adjusted IGF1 values were referenced from a previously published large multicenter study by Brabant et al. (10, 11), employing the same assay utilized in this study. Z-score calculation necessitated that age-specific s.d. reference values be averaged, since the reference data existed in a slightly non-Gaussian distribution.

Statistical analysis was performed by Excel 2003 (Microsoft Corporation) and GraphPad Prism 4 (GraphPad Software, San Francisco, CA, USA). All values are shown as means ± s.e.m. Data groups were compared with the Student’s unpaired t-test or Mann–Whitney test as appropriate. Relationships between GHn after oral glucose (GHn) levels and other plasma GH parameters and IGF1 z-scores were analyzed by regression analysis, and Spearman r was utilized for correlations. A P value <0.05 was taken as significant.
Results

The two groups studied did not differ significantly for age, although there was a trend for lower age in the ‘high’ GH group ($P=0.06$). There were no significant differences for gender and body mass index between groups. One patient from the ‘high’ GH group and two patients from the ‘low’ GH group showed plasma fasting glucose levels ≥ 126 mg/dl, compatible with the diagnosis of diabetes as defined by American Diabetes Association (12). However, none of them were on any specific therapy for diabetes, and fasting plasma glucose levels were lower than 200 mg/dl by the time of specific therapy for diabetes, and fasting plasma glucose levels were lower than 200 mg/dl by the time of evaluation.

The 24 h individual GH means for the ‘high’ and the ‘low’ GH patients varied between 4.66–120.83 and 0.64–3.95 μg/l respectively ($P<0.0001$). The GHn of both groups strongly correlated to 24 h GH, defined as the lowest 5% of all GH values, i.e. the lowest seven samples within the 24 h array ($r=0.97$ and 0.94 for the ‘high’ and the ‘low’ GH groups respectively, $P<0.0001$ for both) as well as for the entire group ($r=0.97$, $P<0.0001$). Furthermore, there were significant correlations of GHn and mean 24 h GH ($r=0.91$ and 0.63 for the ‘high’ and the ‘low’ GH groups. $P<0.0001$ and $P<0.001$ respectively) as well as for the entire group ($r=0.88$, $P<0.0001$). Likewise, GHn correlated significantly with the baseline GH from OGTT for both the studied groups ($r=0.96$ and 0.79 for the ‘high’ and the ‘low’ GH groups respectively, $P<0.0001$ for both comparisons) as well as for the entire group ($r=0.93$, $P<0.0001$). Figure 1 shows regression analysis of the logarithm-transformed GHn versus mean 24 h GH in all subjects.

The GHn also correlated significantly with IGF1 z-scores for both the ‘low’ GH group ($r=0.75$, $P<0.0001$) and to the entire group ($r=0.73$, $P<0.0001$). However, there was no significant correlation of GHn with IGF1 z-scores for the ‘high’ GH group.

The baseline and nadir absolute GH values for each patient during OGTT are shown in Fig. 2. In the ‘high’ GH group, none of the patients had GHn below 1 μg/l. On the other hand, 13 out of 25 patients (52%) in the ‘low’ GH group had GHn below 1 μg/l, and 7 patients (28%) had GHn below 0.4 μg/l. Six patients in the ‘low’ GH group (24%) had baseline GH (immediately before OGTT) levels below 1 μg/l. The clinical data for patients suppressing GH under 0.4 μg/l are shown in Table 1. Four out of these seven patients were cured by transsphenoidal surgery and normalized IGF1 levels. GH-secreting adenoma was identified immunochemically in all of them.

In Fig. 3, the average percent suppression for each 10 min time point during the entire 120 min of OGTT is shown for the two studied groups. No statistical differences could be observed between groups at any time point. The maximal overall percent suppression for the ‘high’ GH group was observed at 120 min ($13.6\%\pm8.6\%$). Likewise, the maximal average GH percent change was detected at 110 min ($16.1\%\pm12.2\%$) in the ‘low’ GH group.

The maximal GH suppression at any time point during OGTTs for both groups (Fig. 4) was similar between the ‘high’ and the ‘low’ GH groups of patients ($-31.8\%\pm5.7$ vs $-42.9\%\pm5.3$, $P>0.05$).

Table 1 Clinical data for the seven acromegalic patients suppressing to lower than 0.4 μg/l in oral glucose tolerance tests.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Gender</th>
<th>Age (years)</th>
<th>BMI (kg/m2)</th>
<th>Adenoma</th>
<th>GH (ng/ml)</th>
<th>GH nadir (ng/ml)</th>
<th>IGF1 (ng/ml) (upper limit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Female</td>
<td>38</td>
<td>17.58</td>
<td>Micro</td>
<td>0.29</td>
<td>0.13</td>
<td>309 (239)</td>
</tr>
<tr>
<td>02</td>
<td>Female</td>
<td>30</td>
<td>30.00</td>
<td>Micro</td>
<td>0.08</td>
<td>0.07</td>
<td>561 (257)</td>
</tr>
<tr>
<td>03</td>
<td>Male</td>
<td>25</td>
<td>26.98</td>
<td>Micro</td>
<td>1.59</td>
<td>0.21</td>
<td>348 (309)</td>
</tr>
<tr>
<td>04</td>
<td>Female</td>
<td>22</td>
<td>22.04</td>
<td>Macro</td>
<td>0.78</td>
<td>0.13</td>
<td>361 (294)</td>
</tr>
<tr>
<td>05</td>
<td>Female</td>
<td>49</td>
<td>25.15</td>
<td>Micro</td>
<td>0.28</td>
<td>0.16</td>
<td>281 (208)</td>
</tr>
<tr>
<td>06</td>
<td>Female</td>
<td>25</td>
<td>27.18</td>
<td>Micro</td>
<td>0.06</td>
<td>0.03</td>
<td>398 (294)</td>
</tr>
<tr>
<td>07</td>
<td>Male</td>
<td>40</td>
<td>22.98</td>
<td>Micro</td>
<td>0.91</td>
<td>0.19</td>
<td>493 (228)</td>
</tr>
</tbody>
</table>

BMI, body mass index; Micro, microadenoma; Macro, macroadenoma; IGF1, insulin-like growth factor 1.

*aBaseline GH in oral glucose tolerance test.

*bGH nadir in oral glucose tolerance test.
Discussion

Several studies have recently attempted to define the normal postglucose GHn as an indicator of biochemical remission of acromegaly. While some of them have suggested that the $1 \mu g/l$ cut-off level was satisfactory (4, 5, 7, 13, 14), others have suggested that lower cut-offs should be utilized to better define remission of acromegaly (8, 9, 15–18). We show here that the utility of OGTT is determined by the degree of endogenous GH hypersecretion: 100% of clinically and biochemically active acromegalic patients with ‘high’ GH profiles have postglucose GHn higher than $1 \mu g/l$, while over 50% of the active ‘low’ GH acromegalic patients have ostensibly normal GH suppressibility by the same criterion. Moreover, in the ‘low’ GH group, postglucose GH values below $0.4 \mu g/l$, i.e. normal according to the proposed contemporary criteria (8), were achieved in almost 30% of the patients.

Several previous reports studied the limits of GH suppressibility by glucose and suggested different normalcy criteria for men and women or correction for the body mass index in patients with acromegaly (17). These questions, while unquestionably valid scientifically, would be very difficult to implement in clinical practice especially when GH assay heterogeneity is so wide. Thus, the most recent consensus statement (8) intentionally chose to provide a strict but uniform $0.4 \mu g/l$ criterion. In our study, plasma GH suppression by glucose to below $0.4 \mu g/l$ occurred in both males and females, in both lean and overweight acromegalic patients, and in both macro- and microadenomas. In the majority of cases, baseline GH levels (prior to administration of oral glucose) were lower than $1.0 \mu g/l$, corroborating the notion that GH suppressibility by glucose in naive acromegalic patients is a function of the magnitude of spontaneous GH hypersecretion.

The distinction between the ‘high’ and the ‘low’ GH groups as used in this analysis is likely to be artificial, and both groups represent different parts of the continuum of GH output in patients with acromegaly. Indeed, percent GH suppression by glucose did not differ between the two groups, and there was high degree of linear correlation between the magnitude of spontaneous GH output and the glucose-suppressed GH level across the entire group. It is noteworthy to point that if a lower cut-off value such as 3.2 $\mu g/l$ had been taken (6), two patients would move from the ‘low’ to the ‘high’ GH group. Interestingly, these two patients showed GHn higher than $1.0 \mu g/l$, which means that there would be even higher percentage of normal suppressibility in the ‘low’ GH group, exacerbating the problem even further. The rest of the data would not change materially.

Several studies have recently addressed the frequent discrepancies between GHn and IGF1 levels during the follow-up of acromegalic patients (19–21). While it has been suggested that data from OGTT can effectively substitute the GH day curve (20), the degree of increased IGF1 levels and GHn was correlated with subtle abnormalities of daytime GH secretion (19). However, these studies have addressed the role of OGTT in previously treated patients, whereas patients in our study were all newly diagnosed and treatment-naive.

Present investigation also shows that while maximal average GH suppression was usually achieved at about 120 min after glucose overload, as suggested by others (22), the timing of the nadir varied for each patient between 60 and 120 min. Therefore, although the 120 min has been advocated as the sole point in OGTT to be measured (12, 22), our data suggest that adherence to this recommendation or the use of relatively infrequent GH sampling may actually miss the time of maximal GHn.

Perhaps, this might at least in part explain the combination of normal IGF1 and incompletely suppressed GH described by other investigators (5, 22–24).

The physiological meaning of GHn is uncertain. OGTT might conceivably serve as an inexpensive and
easily performed test to assess the spontaneous baseline GH output, i.e. the ‘growth-defining’ parameter of the total GH output (25, 26). However, GHn was perfectly normal in almost 30% of the patients with relatively low GH output but with clinically active disease and clearly elevated IGF1 concentrations. This is, to the best of our knowledge, the first study to show that, although GHn correlates significantly with mean 24 h GH, baseline OGTT values, and to 24 h GHn in acromegalic patients irrespective of GH output, the maximal suppressibility observed with GHn cannot serve as an exclusion of active disease in the ‘low’ GH acromegalic group of patients. It had been suggested recently that, in the presence of discordant serum IGF1 and GHn levels, IGF1 active disease in the ‘low’ GH acromegalic group of patients with relatively low GH output, i.e. in the very group requiring heightened diagnostic scrutiny. The false negativity of ~50% using the conventional criterion of 1 μg/l or ~30%, when using Nichols ILMA and the criteria recommended by the most recent consensus statement (8) draw attention to the potential limitation of this test as a diagnostic tool to the low GH output acromegalic patients.

Declaration of interest
The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding
A Ribeiro-Oliveira Jr was supported by grants from Fulbright, CAPES (Coordenacio´n de Aperfeicoamento de Pessoal de Nivel Superior), and FAPEMIG (Fundo´es de Amparo a Pesquisa do Estado de Minas Gerais). A L Barkan was supported by grant from NIH (National Institute of Health- RO-1 DK-071955).

Acknowledgements
We thank Kathy Symons for her technical assistance with the assays.

References

www.eje-online.org